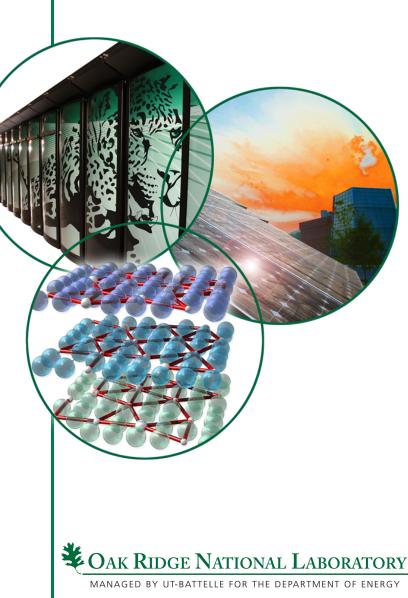
A new transient CLEERS SCR protocol

Josh Pihl, Todd Toops, Stuart Daw Oak Ridge National Laboratory


presented to:

2010 DOE Crosscut Workshop on Lean Emissions Reduction Simulation

Dearborn, MI

April 20, 2010

Acknowledgments

Funding sponsors: Ken Howden & Gurpreet Singh U.S. DOE Office of Vehicle Technologies

CRADA partners for development of protocol predecessor: Vadim Strots, Ed Derybowski *Navistar, Inc.* Gordon Parker *Michigan Technological University*

> Providers of feedback during early stages: John Lee, Maruthi Devarakonda *Pacific Northwest National Laboratory* Kalyan Chakravarthy *Oak Ridge National Laboratory*

Motivation

- Existing CLEERS protocol for urea SCR is a collection of steady state points
- It does not measure NH₃ storage and release or the reactivity of stored NH3, which are crucial to accurate device simulations
- A new transient protocol would:
 - generate well-defined data sets that could be used for parameter estimation and model validation
 - help minimize time and expense required to generate such data sets (enable rapid adaptation to changing catalyst formulations)
 - facilitate comparison of catalyst properties and kinetic data between organizations
 - avoid expense and hassle for others to build a protocol from scratch
 - held ensure the experiments we run are relevant to the needs of the aftertreatment modeling and development community

Goal: Create a general methodology for running SCR experiments that extracts necessary model parameters (reaction kinetics, storage capacities) with minimal time and expense

Approach

- Define time sequence of inlet compositions and catalyst temperatures
- Leave most operating parameters variable to allow users to customize protocol based on application requirements
 - temperatures
 - space velocities
 - step times (depend on temperatures, space velocities, catalyst formulation)
 - instead of prescribed times, allow each step to come to a steady state
 - current definition of steady state: 0.1% change in concentration per minute
 - concentrations of O_2 , H_2O , CO_2 , and total NOx
 - NH₃, NO, and NO₂ concentrations defined relative to total NOx in protocol
- Provide a set of suggested operating parameters

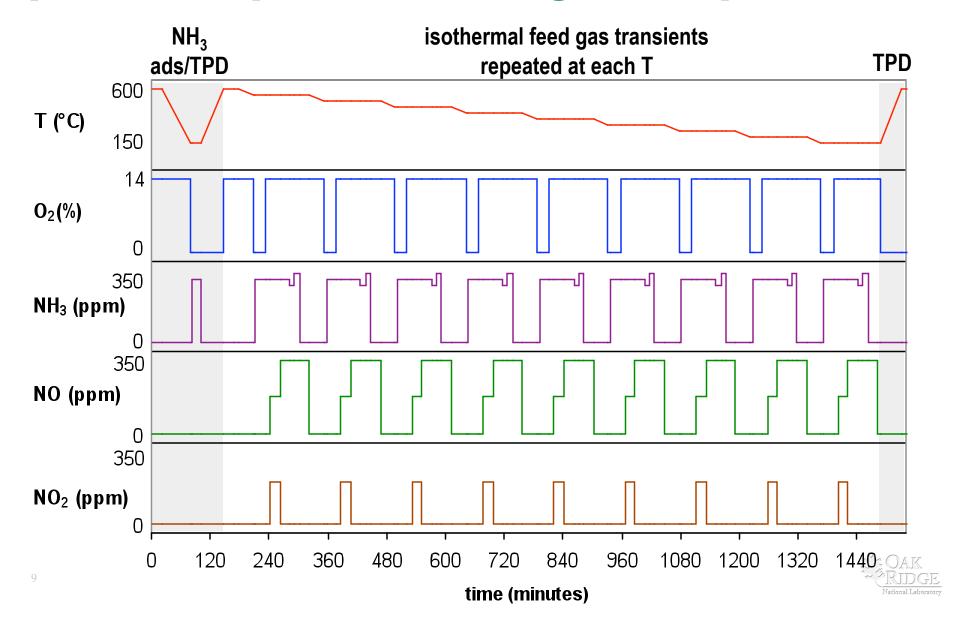
Scope of proposed protocol

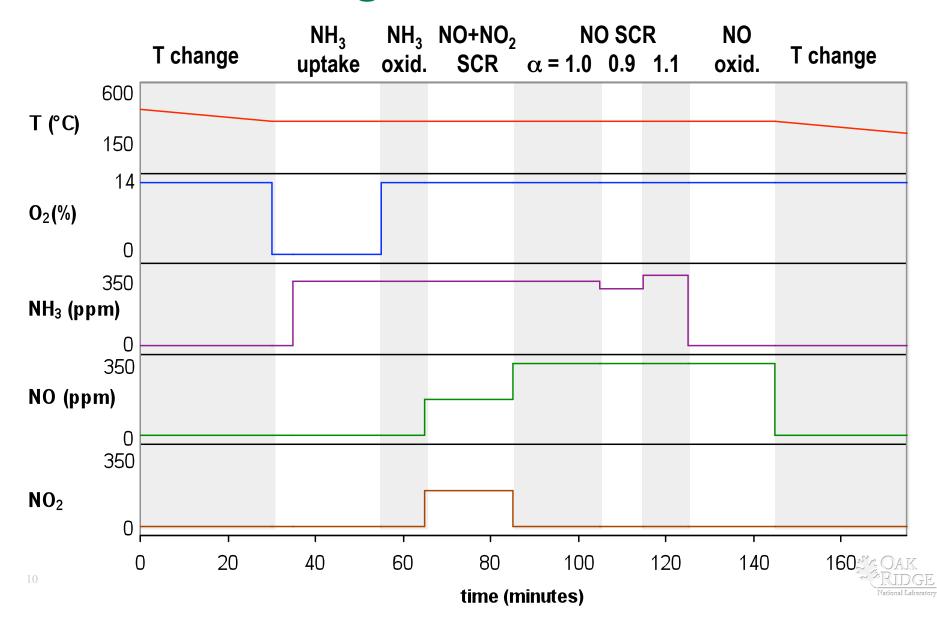
- Processes included in current scope:
 - NH₃ storage capacity
 - NH₃ desorption
 - NH₃ oxidation
 - NO oxidation
 - NO only SCR kinetics, including NH₃/NO ratio impact
 - NO + NO₂ SCR kinetics
 - decomposition of surface species formed under low temperature SCR conditions
- Not currently included:
 - impact of O₂, H₂O, and CO₂ concentrations
 - dynamic (pulsed input) experiments
 - urea thermolysis/hydrolysis
 - poisons (HCs, sulfur)

Proposed CLEERS transient SCR protocol

Step	Description	NH ₃	NO	NO ₂	02	H ₂ O	CO ₂	Т
0(a)	Pretreat	0	0	0	[O ₂]	[H ₂ O]	[CO ₂]	Tn+50
0(b)	T change	0	0	0	[O ₂]	[H ₂ O]	[CO ₂]	Tn+50 ->T0
0(c)	NH ₃ adsorption	[NOx]	0	0	0	[H ₂ O]	[CO ₂]	Т0
0(d)	NH ₃ TPD (10°C/min)	0	0	0	0	[H ₂ O]	[CO ₂]	T0–>Tn+50
0(e)	Pretreat	0	0	0	[O ₂]	[H ₂ O]	[CO ₂]	Tn+50
1(a)	T change	0	0	0	[O ₂]	[H ₂ O]	[CO ₂]	Tn+50 –> Tn
1(b)	NH ₃ storage	[NOx]	0	0	0	[H ₂ O]	[CO ₂]	Tn
1(c)	NH ₃ oxidation	[NOx]	0	0	[O ₂]	[H ₂ O]	[CO ₂]	Tn
1(d)	NO+NO2 SCR α = 1.0	[NOx]	0.5[NOx]	0.5[NOx]	[O ₂]	[H ₂ O]	[CO ₂]	Tn
1(e)	NO SCR α = 1.0	[NOx]	[NOx]	0	[O ₂]	[H ₂ O]	[CO ₂]	Tn
1(f)	NO SCR α = 0.9	0.9[NOx]	[NOx]	0	[O ₂]	[H ₂ O]	[CO ₂]	Tn
1(g)	NO SCR α = 1.1	1.1[NOx]	[NOx]	0	[O ₂]	[H ₂ O]	[CO ₂]	Tn
1(h)	NO oxidation, NH ₃ storage	0	[NOx]	0	[O ₂]	[H ₂ O]	[CO ₂]	Tn
2(a)	T change	0	0	0	[O ₂]	[H ₂ O]	[CO ₂]	Tn -> T(n-1)
	Repeat a-h for all temperatures							T(n-1)T0
n(h)	NH ₃ storage, NO oxidation	0	[NOx]	0	[O ₂]	[H ₂ O]	[CO ₂]	JUNE TO K
n+1(a)	TPD (10°C/min)	0	0	0	[O ₂]	[H ₂ O]	[CO ₂]	TO -> Tn+50

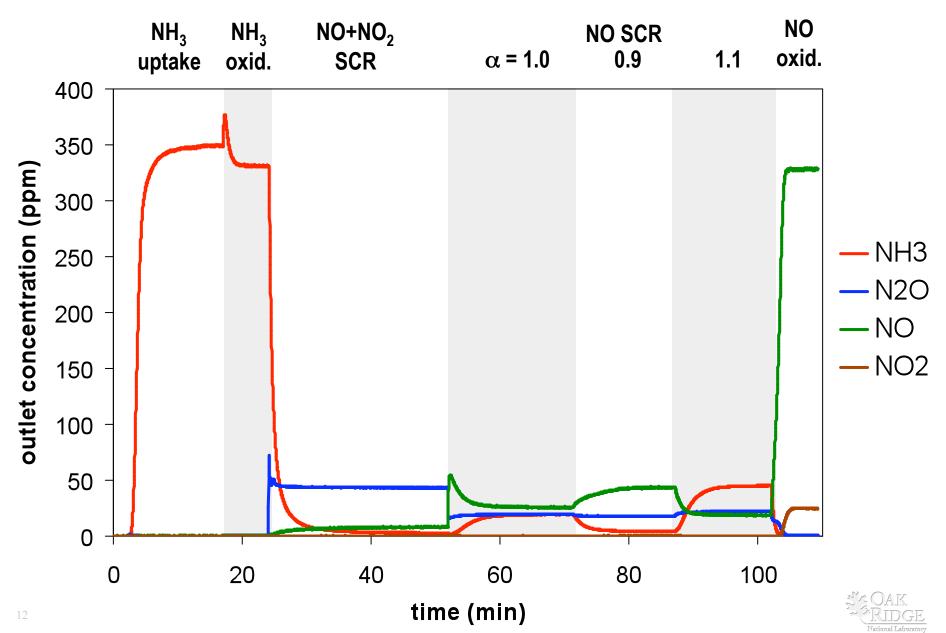
Example operating parameters for transient CLEERS SCR protocol


- operating temperatures: 150, 200, 250, 300, 350, 500, 450, 500, 550°C
 - n = 9
 - − T0 = 150°C
 - − Tn = T9 = 550°C
 - Tn+50 = 600°C
- concentrations (from steady state CLEERS SCR protocol):
 - [NOx] = 350 ppm
 - − [O₂] = 14%
 - $[H_2O] = 4.5\%$
 - [CO₂] = 5%

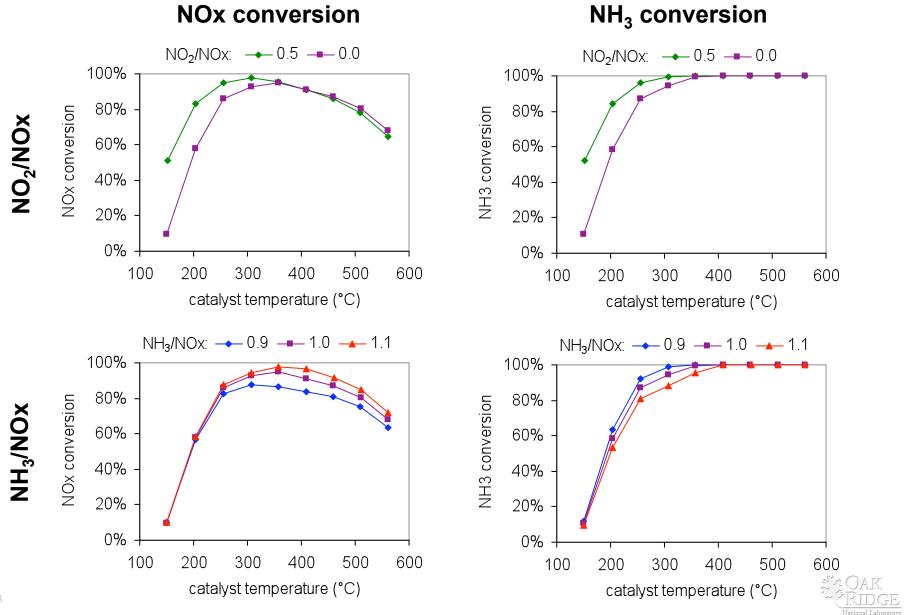

Example CLEERS transient SCR protocol

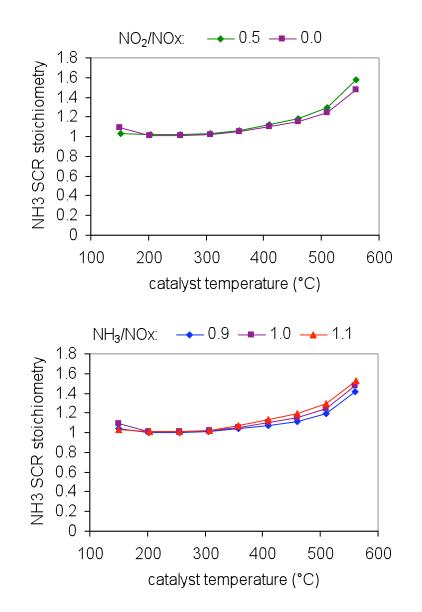
Step	Description	NH ₃	NO	NO ₂	02	H ₂ O	CO ₂	Т
		(ppm)	(ppm)	(ppm)	(%)	(%)	(%)	(°C)
0(a)	Pretreat	0	0	0	14	4.5	5	600
0(b)	T change	0	0	0	14	4.5	5	600->150
0(c)	NH ₃ adsorption	350	0	0	0	4.5	5	150
0(d)	NH ₃ TPD (10°C/min)	0	0	0	0	4.5	5	150->600
0(e)	Pretreat	0	0	0	14	4.5	5	600
1(a)	T change	0	0	0	14	4.5	5	600 -> 550
1(b)	NH ₃ storage	350	0	0	0	4.5	5	550
1(c)	NH ₃ oxidation	350	0	0	14	4.5	5	550
1(d)	NO+NO2 SCR α = 1.0	350	175	175	14	4.5	5	550
1(e)	NO SCR α = 1.0	350	350	0	14	4.5	5	550
1(f)	NO SCR α = 0.9	315	350	0	14	4.5	5	550
1(g)	NO SCR α = 1.1	385	350	0	14	4.5	5	550
1(h)	NO oxidation, NH ₃ storage	0	350	0	14	4.5	5	550
2(a)	T change	0	0	0	14	4.5	5	550 -> 450
	Repeat a-h for all temperatures							450150
8 9(h)	NH ₃ storage, NO oxidation	0	175	0	14	4.5	5	150 AJK 150 AJK National Leborator
10(a)	TPD (10°C/min)	0	0	0	14	4.5	5	150 -> 600

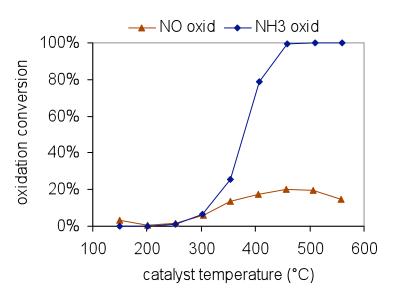
Example CLEERS transient SCR protocol – plot of temperatures and gas compositions


CLEERS Transient SCR Protocol – isothermal feed gas transients at each T

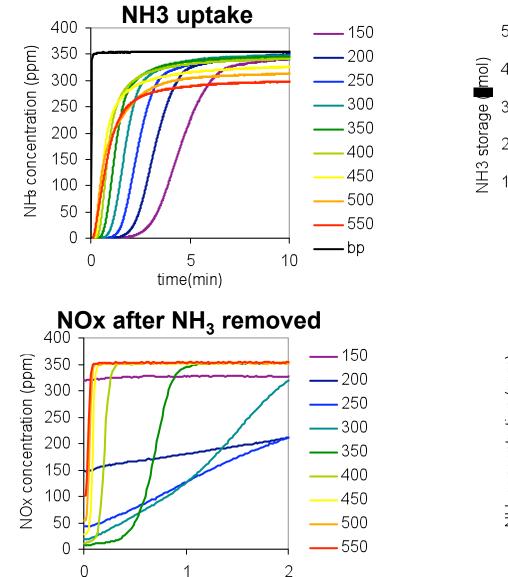
Other operating details

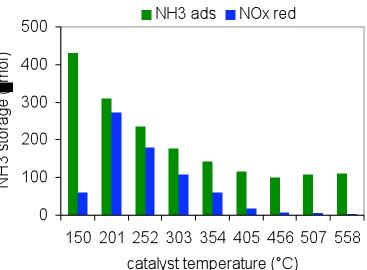

- Ran on automated flow reactor
- Used Cu zeolite core sample (1.9 cm D x 5 cm L)
- SV = 60,000 hr⁻¹
- Total run time for protocol: 21 hours

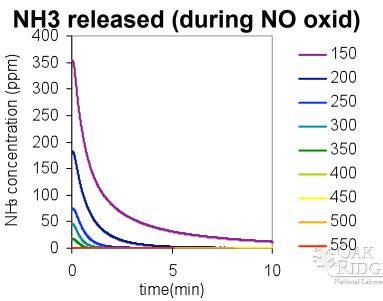



Sample data: outlet composition at 300°C

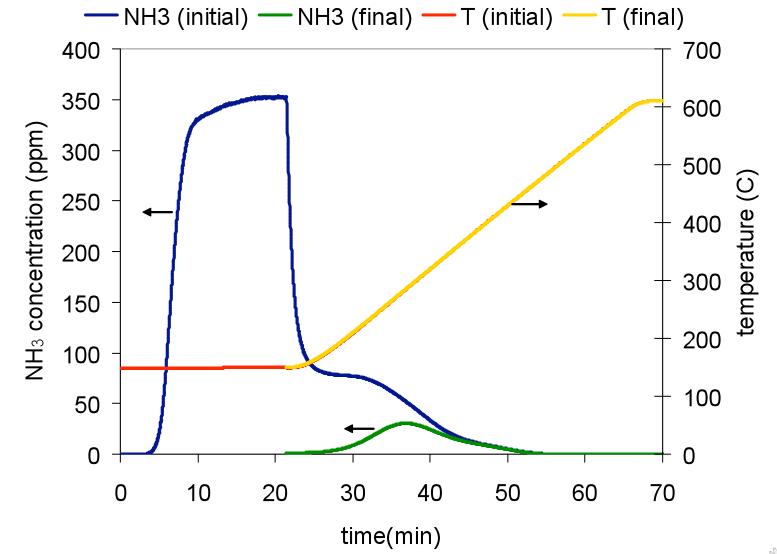
Sample results: steady state conversions


Sample results: SCR stoichiometry and oxidation conversion





Sample results: NH₃ storage from NH₃ uptake and NOx converted by stored NH₃



time(min)

Sample results: TPDs

Questions to ponder

- Have we missed anything critical?
- Have we included anything unnecessary?
- Are either of the previous two answers dependent on the type of model the data will be used to calibrate?
 - If so, do we need more than one protocol, or perhaps a separate group of experiments to include in the protocol just for more detailed models?
- Are there any problems with the way the protocol is constructed (order of steps, variable parameters)?

pihlja@ornl.gov

