

An Efficient Methodology for Global SCR Kinetic Model Tuning

Yuanzhou Xi, Nathan Ottinger and Z. Gerald Liu

Cummins Emission Solutions Analysis and Testing Technology 04/2014

Background/Challenges

- Lack understanding of reaction mechanism and kinetics over wide range of reaction conditions
- -Complex reaction network
- -Non-linear phenomena of chemical reactions
- Reactions couple with mass transfer and heat transfer

f is the Reactor Model

Control Equations for Reactor Model (SS)

dr.

- Gas Phase:
- Surface:

$$\frac{ac_j}{d\overline{v}} = -a_1 k_{g,j} (\overline{c}_j - \overline{c}_{j,s})$$

$$a_1 k_{g,j} (\overline{c}_j - \overline{c}_{j,s}) - a_3 \sum v_{ij} r_i'' (C_{-ref} \overline{c}_s) = 0$$

$$a_3 \sum v_{i\theta} r_i'' (C_{-ref} \overline{c}_s) = 0$$

Assumptions:

- Stable catalyst
- Isothermal conditions
- Single adsorption site for only NH3
- Interal diffusion lumped into global kintics

Kinetic Model (r_i'')

- To decide # of reactions to model with appropriate rate expressions (r''_i) and calibrated kinetic parameters

List of Chemical Reactions Modeled for VSCR

	Reactions	
1	$NH_3 + S_1 <-> NH_3 - S_1$	NH ₃ adsorption and desorption (reversible)
2	$2NH_3 - S_1 + 1.5O_2 - N_2 + 3H_2O + 2S_1$	NH ₃ oxidation
3	NO + 0.5 O ₂ <-> NO ₂	NO oxidation(reversible)
4	4 NH ₃ -S ₁ + 4 NO + O ₂ -> 4 N ₂ + 6 H ₂ O + 4 S ₁	Standard SCR
5	2 NH ₃ -S ₁ + NO + NO ₂ -> 2 N ₂ + 3 H ₂ O + 2 S ₁	Fast SCR
6	2 NH ₃ -S ₁ + 2.5 O ₂ -> 2NO + 3 H ₂ O + 2 S ₁	NH_3 oxidation to NO
7	$2NH_3 - S_1 + 2NO + 1.5O_2 -> 2N_2O + 3H_2O + 2S_1$	N ₂ O formation

Simplification - kinetics

Using global kinetics instead of micro-kinetics

Example to use

Lump internal mass transfer effect into kinetics

*http://www.topsoe.com

Dumesic et al, J. Catal, 1996

Data Fitting

- Numerically solving differential equations
- Minimizing differences between measured values and calculated values by varying kinetic parameters

$$\min_{\beta} \left(\sum \left[\left(y^{\exp} - y^{cal} \left(x : \alpha, \beta \right) \right) \right]^2 \right)$$

Experimental

Reaction conditions:

- NH₃ TPD
- Standard SCR; fast SCR; NO oxidation; NH₃ oxidation
- NO_x, 100~1000 ppm
- NO₂/NO_x =0, 0.25, 0.5
- ANR sweep: ANR=0.6~1.4
- O₂ effect: 4~13%
- T: 170~500 °C

Cummins 4-step Protocol*

*Kamasamudram et al., Catalysis Today 151 (2010) 212-222

 $NH_3 TPD: NH_3 + S_1 < ---> NH_3 - S_1$

 $r_{1} = A_{1,2} e^{(-E_{1,6}/RT)} C_{NH_{2}} (1-\theta) - A_{1,3} e^{(-E_{1,4}(1-\alpha\theta)/RT)} \theta$

NH₃ oxidation

Experimental

Model Fit

NO oxidation

Species	R-Sq [%]	Mean differece [ppm]	95% CI for mean difference [ppm]	
NO	100.0	0.703	(0.452, 0.954)	
NO ₂	100.0	-0.966	(-1.279, -0.654)	ior
			curt Soluti	ion

NO oxidation Experimental

Model Fit

SCR

0.0772

ission

utions

(-0.0036, 0.1580)

14

 N_2O

98.7

SCR Experimental

15

Effect of NO_2/NO_x ratio for SCR

Experimental

Model Fit

4-step protocol simulation@250 C

4-step protocol simulation@450C

Effect of external mass transfer

w/o external mass transfer

Summary

- A methodology was developed for efficiently tuning global SCR kinetics and demonstrated for a washcoated VSCR catalyst over wide range of conditions
- External mass transfer are more apparent at catalyst entrance than catalyst exit
- The NOx conversion will be more affected by external mass transfer at high T and high SV based on simulation

Acknowledgements

Cummins Colleagues

- Mr. Neal Currier
- Dr. Aleksey Yezerets
- Dr. Krishna Kamasamudram
- Dr. Ramya Vedaiyan
- Mr. Apoorv Kalyankar

Literature

- Olsson et al. Applied Catalysis B: Environmental 81 (2008) 203–217
- Guthenke, Tronconi et al. Advances in Chemical Engineering, Volume 33, 2007, Pages 103-211,280-283
- Sampara, PhD Thesis: Global Reaction Kinetics for Oxidation and Storage in Diesel Oxidation Catalysts2008
- Kamasamudram et al., Catalysis Today 151 (2010) 212-222
- Dumesic et al. J. Catal. 1996
- Many others...

Thank you! Questions?

