LOW TEMPERATURE LIMITERS TO CATALYST LIGHT-OFF

Gordon J.J. Bartley, Ph.D. - Southwest Research Institute®

CLEERS 18 April 27, 2015

Copyright Southwest Research Institute 2015

Presentation Outline

- Background
- Project Objectives
- Catalyst Evaluated
- Individual Test Conditions and Results
- Conclusions

This Presentation is Only a Summary

Refer to SAE Paper 2015-01-1025 for More Details, and SwRI for Further Details

Background

- "More fuel efficient vehicles are resulting in lower exhaust temperatures. Based on exhaust temperature expectations for future engine technology, industry representatives predict light-off temperatures of ~150°C will be required to meet emission regulations for new engines used to meet vehicle fuel economy standards."
- "Lowering of the temperature at which catalysts become active to ~150°C is extremely difficult and forms The 150°C Challenge"

USDRIVE WORKSHOP, November 29-30, 2012 Future Automotive Aftertreatment Solutions: The 150°C Challenge Workshop Report

Project Objectives

- 1. Identify low temperature *limiters* for a variety of relevant catalyst aftertreatment types
- 2. Postulate the mechanisms behind low temperature activity limitation
- 3. Consider ways in which to *mitigate* these limitations, facilitating low temperature activity

The objectives are listed in relative priority for the project, but all are recognized as important to the overall goal.

Seven Catalysts Investigated

- A Wide, Shallow Dive
 - Any one of these can be a lifetime's work
- TWC gasoline, stoichiometric
- DOC diesel, lean
- NGOx natural gas oxidation, lean
- LNT gasoline, lean NO_x
- Fe-SCR diesel, lean NO_X
- Cu-SCR diesel, lean NO_x
- V-SCR diesel, lean NO_x
- AMOx diesel, lean NH₃

Low Temperature Catalyst or Low Temperature Catalysis?

• Considerable Efforts are Being Made to Develop Low Temperature Catalyst Formulations

SwRI's Low Temperature Catalyst

- 100 % conversion > 150°C
- 20% conversion at 100°C
- Problem Solved !

We Cheated !!

- The Catalyst was a Standard Three-Way Formulation
- The Gas Mixture was :
 - 10 % O₂
 - 100 ppm CO
 - 2000 ppm H₂
 - Balance N₂

No NO_x No SO₂ No hydrocarbons

No H_2O

• The Point?

Today's catalysts are already capable of low temperature catalysis, but the environment is critical to effective low temperature catalysis

Consider Both the Catalyst and the Conditions as a System and Look for System Solutions

Evaluation Procedure

- SwRI's USGR® Gas Reactor Used
- Reverse Light-Off → Forward Light-Off
 RLO → FLO

Three-Way Catalyst

- 100,000 Mile Field Catalyst, Acid-Washed to Remove Deposits (phosphorus, zinc, calcium)
- Stoichiometric, Perturbated RLO → FLO

Pt = 24 g/ft³ Pd = 39 g/ft³ Rh = 6.5 g/ft³

	Concentration	
Gas	Lean	Rich
Nitric Oxide (NO)	500 ppm	500 ppm
Propene/Propane 2:1 (C_3H_6/C_3H_8)	483 ppmC3	483 ppmC3
Carbon Monoxide (CO)	0	2000 ppm
Hydrogen (H ₂)	0	667 ppm
Oxygen (O_2)	0.65 percent	0
Carbon Dioxide (CO ₂)	13 percent	13 percent
Water (H_2O)	14 percent	14 percent
Nitrogen (N ₂)	Balance	Balance

TWC – Full Gas Mix

- CO Light-Off Initiated at 160°C, but Protracted
- Propene & NO Coincident

TWC – minus NO

- Removal of NO Clearly Lowers CO and HC Light-Off Temperatures
- NO is a Light-Off Inhibiter

N₂O Formation

- N₂O Formation Coincides with NO Activation
- NO Inhibition Mechanism Seems
 Plausible
- Use of an NO adsorber could improve low temperature activity
 - NO_X storage typically $NO \rightarrow NO_2$ conversion, then NO_2 storage as nitrates
 - No NO₂ formation cold, so need NO storage as nitrite

TWC – minus Propene (C_3H_6)

- Removal of C₃H₆ Lowers CO Light-Off Temperatures
- Removal of C₃H₆ Increases NO Light-Off Temperatures
- <u>C₃H₆ is Both a CO Light-Off</u> <u>Inhibiter and a NO Light-Off</u> <u>Promoter</u>

TWC – minus CO/H_2

- Removal of CO/H₂ Increased Propene and NO Light-Off Temperatures
- <u>CO/H₂ is a Light-Off Promoter</u>

TWC - Summary

- NO Inhibits CO and HC
- C₃H₆ Inhibits CO, but Promotes NO
- CO/H₂ is a Light-Off Promoter

Solutions may include:

cold start NO adsorber

run slightly rich to increase CO, H_2 and alkenes, and reduce NO (supplemental O_2 may be needed)

Diesel Oxidation Catalyst

- Degreened Catalyst from 2007 MY Class 8 Truck
- Lean RLO \rightarrow FLO

Pt = 0.838 wt% Pd = 0.155 wt%

Gas	Concentration
Nitric Oxide (NO)	600 ppm
Ethene (C_2H_4)	75 ppmC2
Carbon Monoxide (CO)	300 ppm
Hydrogen (H ₂)	100 ppm
Oxygen (O ₂)	10 percent
Carbon Dioxide (CO ₂)	5.6 percent
Water (H ₂ O)	6.0 percent
Nitrogen (N ₂)	Balance

DOC – Full Gas Mix

- CO T₅₀ Light-Off at 140°C
- C₂H₄ T₅₀ Light-Off at 246°C
- Forward Light-Off Temperatures of C₂H₄ & NO are Lower Than Reverse Light-Off Temperatures

Inverse Hysteresis*

- A Product of Reactions Inhibits Reverse Light-Off – NO₂…?
 - * Martin Votsmeier CLEERS 2014

NO₂ Effect on Forward Light-Off

- 50:50 NO:NO₂ Mixture
- NO₂ Inhibits CO & Promotes Low Temperature C₂H₄, but Inhibits Higher Temperature C₂H₄

Copyright Southwest Research Institute 2015

DOC – minus NO_X

- Removal of NO_X Clearly Lowers CO and HC Light-Off Temperatures
- <u>NO_x is a Light-Off Inhibiter</u>
- NO Inhibition Mechanism Like TWC...?

Copyright Southwest Research Institute 2015

DOC – minus CO

- Removal of CO Raised C₂H₄ and NO Light-Off Temperatures
- <u>CO is a Promoter of Low</u>
 <u>Temperature HC Light-Off</u>

DOC - Summary

- <u>NO Inhibits CO and C₂H₄</u>
- <u>CO Promotes C₂H₄</u>
- <u>C₂H₄ Promotes NO</u>
 - Lean NO_X catalysis
- Also, H₂, CO₂ and H₂O Promote NO Light-Off
 - Competative adsorption ?

Solutions may include:

cold start NO adsorber

*increase CO, H*₂ & *reduce NO in exhaust*

Natural Gas Oxidation Catalyst

- Used a TWC from an ISX-12G, Preconditioned with 150 Engine Hours (no NGOx available)
- Lean RLO → FLO

Pt = 1.3 g/ft³ Pd = 57 g/ft³ Rh = 1.1 g/ft³

Gas	Concentration
Nitric Oxide (NO)	500 ppm
Methane (CH ₄)	1500 ppm
Ethane (C_2H_6)	150 ppm
Carbon Monoxide (CO)	1200 ppm
Hydrogen (H ₂)	280 ppm
Oxygen (O ₂)	10 percent
Carbon Dioxide (CO ₂)	7.5 percent
Water (H ₂ O)	8.0 percent
Nitrogen (N ₂)	Balance

NGOx – Full Gas Mix

- CH₄ Oxidation was Primary Goal
- CH₄ T₅₀ Light-Offs Around 500°C
- Clearly Not an Ideal Catalyst, but Trends Should Still be Valid

NGOx – minus H₂O

- Removal of H₂O Clearly Lowers CO and HC Light-Off Temperatures
 - CH₄ light-off lowered by 116 143°C
- <u>H₂O is a Strong Light-Off Inhibiter</u>

NGOx – minus NO

NO Inhibits CO Forward Light-Off,

but

- NO Promotes HC Light-Off
 - Lean NO_X catalysis
- NO is a Promoter for CH₄ Oxidation

NGOx – H₂ Effect

- <u>H₂ Promotes CO and HC Light-</u> <u>Off</u>
- Increasing H₂ 10x Further Improves CH₄ Oxidation Light-Off
 - FLO 533°C → 501°C
 - RLO 492°C → 469°C

SAE INTERNATIONAL

Paper # 2015-01-1025

Copyright Southwest Research Institute 2015

NGOx - Summary

- H₂O Strongly Inhibits CH₄
 Oxidation
- NO and H₂ Promote CH₄
 Oxidation

Solutions for Lower Temperature CH₄ Oxidation may Include:

hydrophobic catalyst support

*increase NO, H*₂ & *reduce H*₂*O in exhaust*

Lean NO_x Trap

• Fresh OEM LNT for 2011 VW Jetta 2.0L TDI

• RLO \rightarrow FLO

- lean/rich cycling 200s/50s
 - Intentionally extended to create NO and NH₃ breakthroughs

Pt = 78 g/ft³ Pd = 13 g/ft³ Rh = 7.7 g/ft³

	Concentration	
Gas	Lean	Rich
AFR/λ	15.88/1.088	14.46/0.990
Nitric Oxide (NO)	30 ppm	30 ppm
Propene/Propane 2:1 (C_3H_6/C_3H_8)	67 ppmC3	67 ppmC3
Carbon Monoxide (CO)	0	750 ppm
Hydrogen (H ₂)	0	250 ppm
Oxygen (O_2)	1 percent	0
Carbon Dioxide (CO ₂)	7.4 percent	7.4 percent
Water (H_2O)	8 percent	8 percent
Nitrogen (N ₂)	Balance	Balance

LNT – Cycle Averaging

LNT - Full Gas Mix

Paper # 2015-01-1025

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 TEMPERATURE, °C -RLO CO LO FLO CO LO Poly. (RLO CO Lo) Poly. (FLO CO Lo)

percent

EFFICIENCY,

Copyright Southwest Research Institute 2015

LNT – Differential Light-Off Behavior

- H₂O Inhibits NO Light-Off
- CO Inhibits NO Light-Off
- HCs Inhibit NO Light-Off

But

<u>C₃H₆ Promotes NO Light-</u>
 <u>Off</u>

Solutions may include:

cold start HC absorber

decrease cold start CO

Fe-Zeolite SCR Catalyst

- Field-Aged, Moderate Mileage, Excellent Condition
- RLO only
 - Forward light-off problems with NH₃ storage and NH₄NO₃ formation
- Fast Reaction Mixture

 $NO + NO_2 + 2NH_3 \rightarrow 2N_2 + 3H_2O$

v -		
	Concentration	
Gas	Lean	
Nitric Oxide (NO)	300 ppm	
Nitrogen Dioxide (NO ₂)	300 ppm	
Ethylene (C_2H_4)	75 ppmC2	
Carbon Monoxide (CO)	300 ppm	
Hydrogen (H ₂)	100 ppm	
Oxygen (O ₂)	10 percent	
Ammonia (NH ₃)	600 ppm	
Water (H ₂ O)	6 percent	
Nitrogen (N ₂)	Balance	

Fe-Zeolite – Full Gas Mix

- Good NO_X Light-Off Just Above Urea Injection Minimum Temperature
- C₂H₄ & CO Light-Offs Coincide with Downturn in NO_X Efficiency
 - concurrent oxidation of NH₃

Fe-Zeolite – NO_x Reactions

 Removal of NO₂ (all NO) Switches to Standard Reaction with Higher Light-Offs

 $4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$

 Removal of NO (all NO₂) Results in Low Temperature NH₄NO₃ Formation

 $2NO_2 + 2NH_3 \rightarrow N_2 + NH_4NO_3 + H_2O$

Fe-Zeolite – minus H₂O

- Removal of H₂O Lowered NO_X, HC and CO Light-Offs
- <u>H₂O is an Inhibiter</u>

Fe-Zeolite - Summary

- Normal NO_x Reaction Behaviors
- H₂O Inhibits NO_X Light-Off

Solutions for lower temperature NO_x light-off may include:

Use of a different reductant than urea e.g. H₂

Cu-Zeolite SCR Catalyst

- USGR-aged, 16 hrs, 775°C, 14% O₂, 5% CO₂, 6% H₂O, bal N₂
- RLO only
- Same Gas Mix as for Fe-zeolite

	Concentration	
Gas	Lean	
Nitric Oxide (NO)	300 ppm	
Nitrogen Dioxide (NO ₂)	300 ppm	
Ethylene (C_2H_4)	75 ppmC2	
Carbon Monoxide (CO)	300 ppm	
Hydrogen (H ₂)	100 ppm	
Oxygen (O ₂)	10 percent	
Ammonia (NH ₃)	600 ppm	
Water (H ₂ O)	6 percent	
Nitrogen (N ₂)	Balance	

Cu-Zeolite – Full Gas Mix

- Good NO_X Light-Off Just Above Urea Injection Minimum Temperature
- C₂H₄ & CO Light-Offs Coincide with Downturn in NO_x Efficiency
 - concurrent oxidation of NH₃

Cu-Zeolite - Summary

- No Inhibiters Identified
- <u>H₂O, NO₂ & CO all Mild</u>
 <u>Promoters</u>

Solutions for lower temperature NO_X light-off may include:

Use of a different reductant than urea e.g. H₂

V-SCR Catalyst

- Engine-Preconditioned, 24 hrs DAAAC Cycle Using 2004 Caterpillar C15
- RLO only
- Same Gas Mix as for Fe-Zeolite

	Concentration	
Gas	Lean	
Nitric Oxide (NO)	300 ppm	
Nitrogen Dioxide (NO ₂)	300 ppm	
Ethylene (C_2H_4)	75 ppmC2	
Carbon Monoxide (CO)	300 ppm	
Hydrogen (H ₂)	100 ppm	
Oxygen (O ₂)	10 percent	
Ammonia (NH ₃)	600 ppm	
Water (H_2O)	6 percent	
Nitrogen (N ₂)	Balance	

V-SCR – Full Gas Mix

- Excellent NO_X Light-Off <u>Below</u> Urea Injection Minimum Temperature
- C₂H₄ & CO Light-Offs Coincide with Downturn in NO_x Efficiency
 - concurrent oxidation of NH₃

V-SCR – minus H_2O

- Removal of H₂O Lowered NO_X, HC and CO Light-Offs
- <u>H₂O is an Inhibiter</u>
- NO_X T₅₀ Light-Off at 145°C !
 - well below urea minimum temperature

V-SCR - Summary

- H₂O Inhibits NO_X Light-Off
- No Other Inhibiters Outside of Normal SCR Behavior

Solutions for lower temperature NO_X light-off may include:

Use of a different reductant than urea e.g. H₂

AMOx Catalyst

- State-Of-The-Art Formulation (zeolite over Pt), Hydrothermally Aged 72 hrs at 620°C
- RLO-FLO

Pt = 0.012 wt%Cu = 0.469 wt%

	Concentration	
Gas	Lean	
Nitric Oxide (NO)	15 ppm	
Ammonia (NH ₃)	100 ppm	
Ethylene (C_2H_4)	75 ppmC2	
Carbon Monoxide (CO)	300 ppm	
Hydrogen (H ₂)	100 ppm	
Oxygen (O ₂)	10 percent	
Carbon Dioxide (CO ₂)	5.6 percent	
Water (H ₂ O)	6 percent	
Nitrogen (N ₂)	Balance	

AMOx – Full Gas Mix

- RLO NH₃ T₅₀ at 232°C
- FLO NH_3 Desorption (Negative Conversion Efficiency) and Elevated Light-Off at $T_{50} = 281^{\circ}C$

AMOx – minus ethene (C_2H_4)

- Removal of C₂H₄ Lowered NH₃ Light-Off by 27 – 69°C
- C_2H_4 is an Inhibiter
- If AMOx is Downstream of DOC/DPF/SCR, HCs May be Very Low Already
- If AMOx is Downstream of SCR Only, HCs Could Cause Issues

$AMOx - minus H_2O$

- Reverse Light-Off Temperature Slightly Lower
- Forward Light-Off Temperature Unaffected
- <u>H₂O is a Mild Inhibiter</u>
 but
- Significantly More NH₃
 Desorption at Cold Start
 - Stored H₂O reduces stored NH₃
- If AMOx is Downstream of SCR Only, HCs Could Cause Issues
- If AMOx is Downstream of DOC/DPF/SCR, HCs May be Very Low Already

AMOx - Summary

- H₂O, C₂H₄ & CO are Inhibiters to NH₃ Light-Off
- O₂ is a Promoter for NH₃ Light-Off

Solutions for lower temperature NH₃ light-off may include:

Upstream DOC/DPF

HC absorber to remove unsaturated HCs

Conclusions

• The Inhibiters and Promoters are Summarized in the Table

Catalyst Type	Limiters	Promoters
TWC	NO, C_3H_6	H ₂
DOC	NO, C_2H_4 , NO ₂	СО
SCR – Fe-Z	H ₂ O	NO ₂
SCR – Cu-Z		H_2O , NO_2 , CO
$SCR - V/W/TiO_2$	H ₂ O	NO ₂
LNT	$H_2O, C_3H_8+C_3H_6$	C ₃ H ₆
AMOx	C_2H_4 , CO	H ₂
NGOx	H ₂ O	NO, H ₂

THANK YOU