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Review and Preview

• Asymptotic solution for small dimensionless diffusion resistance, Dinv.

– Introduced at 2014 CLEERS

– “An Asymptotic Solution for Washcoat Pore Diffusion in Catalytic Monoliths”, Bissett, 

Emission Control Science and Technology, Vol. 1, No. 1, pp. 3-16 (2015)

• Summary

– Alternative to approaches using Thiele modulus, ad hoc linearization

– Recognize that “standard” approach (no washcoat gradients) is Dinv = 0 limit.

– Generalize to O(Dinv) to capture dominant effects of small diffusion resistance.

– Practical aftertreatment regime of catalyst effectiveness, Deff ≈ O(10-6 m2/s)

– Permits all features common to standard approach

• Large, fully nonlinear reaction system

• Many species, coverages

– Also dual washcoat layers

– Equivalent computational speed

• Preview

– How does this asymptotic solution fit with other approximations using Thiele modulus? 

– Small concentrations and mass transport limits



Connections with Thiele modulus

• Asymptotic solution of nonlinear reaction/diffusion equations

– No linearizations to obtain effectiveness factors or internal mass transfer coefficients

– Large systems of reactions, species, coverages

• However, can still do “simplest problem”, single-species, linear reactant:

– Thiele modulus, φ, satisfies                              with rate constant, k = -R/ω

– Biot number,                   , controls size of gradients on each side of interface

– Dinv << 1 limit requires both φ and Bi small

– Sometimes done with simpler B.C., ω = 1 at x = 0, but this obscures key points.

– Complete asymptotic analysis 

• Inspired by figure in “Overall mass transfer coefficients and controlling regimes in 

catalytic monoliths”, Joshi et al., Chemical Engineering Science, Vol. 65, pp. 1729-

1747(2010), Figure 2.
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Figure 2 from Joshi, et al. (2010)



Breakdown for all asymptotic regimes for single linear reactant

• Full solution available, 

– e.g., “The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, 

Volume I, The Theory of the Steady State” Aris, Oxford University Press (1975)

• Either from full solution or governing equations. Simple exercise

• First divide into Bi regimes, then φ

• Some regimes are “distinguished limits”, some are transitional sublimits



Bi = O(1)

• Down: increasing temperature

• Blue: kinetic control,

• Red: mass transfer control,

• Mass transfer control =>

– Kinetics fast enough that channel gas “sees” no surface concentration

– Channel gas satisfies

– Reactor output independent of local solution of reaction/diffusion problem in washcoat  
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Bi >> 1

• Corresponds to Joshi paper figure (Deff ≈ O(10-7 m2/s))

– e.g.,                           only occurs when Bi >> 1

• As  temperature (φ2) increases, ωs >> ω before ωg >> ωs

• Kinetic and transport control occur in only 1 extreme regime each

𝜔𝑔 ≈ 𝜔𝑠 ≫  𝜔



Bi << 1

• Our case of interest (Dinv << 1) :                           and 

- Closest regime to “standard”, Dinv = 0 

- 1st and 3rd rows are included sublimits of 2nd row

• Mass transport limitation achieved even while φ2 << O(1)

• Solution in washcoat does not affect reactor output (ωg) for ωg >> ωs
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Dinv << 1 for large nonlinear systems

• Review from asymptotic solution (e.g. single layer)

– used in determining

– Solution:

• Consider reactant,

– If we increase φi
2 greater than O(Dinv):

• “Simplest problem”  mass transfer limit before O(1)

• In general problem, cannot make rate more negative than -Kiωgi

• Instead, decrease

• Flat profiles, (                                         )   ωs → 0

• Transport limitation. Do not need detailed washcoat solution.

• Asymptotic solution depends on approximately flat profiles

– Breakdown with increasing φi
2 manifests as ω(x) < 0
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Small concentration problem

• Can’t get, don’t need (mass transport) accurate asymptotic solution for 

φi
2 = O(1) or larger

• Can’t tolerate negative concentrations

• Several strategies attempted

– Dual layer hardest, especially layer 1 reactant, layer 2 product

– Must respect asymptotic solution for φi
2 << 1, where needed and applicable 

– Can introduce/manipulate higher-order terms: Dinv
2 and higher

• Best strategy so far – hyperbolic functions from “simplest problem”



Maintain positive washcoat profiles

• Each species handled individually (suppress subscript)

• For products, rates positive, no changes required:

– Layer 1:

– Layer 2:

• Positivity requires arguments from algebraic equations for

• For reactants,  

– Layer 1:

– Layer 2:

– When expanded for small φ, these agree with original formulas.

– Maintains ω(x) ≥ 0 for all φ

– Downsides: hyperbolic evaluations and increased nonlinearity of profiles

𝜔(𝑥) =  𝜔 1 + 𝐷𝑖𝑛𝑣
1  𝑅 1 1/6 − 1 − 𝑥 2/2 + 𝐷𝑖𝑛𝑣

1  𝑅 2 𝑥 − 1/2

𝜔(𝑥) =  𝜔 2 + 𝐷𝑖𝑛𝑣
2  𝑅 2 1/6 − 2 − 𝑥 2/2
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Review and Conclusions

• Considerable experience in complex, challenging problems since last 

year. Current release of GT-Suite.

• Increasing Thiele modulus cannot not make the rate larger than the finite 

external mass transfer limit. It makes the washcoat concentrations small.

• Clarified how mass transport limit and small Biot number allows us to 

finesse large concentration gradients of large Thiele modulus

• Avoid negative concentrations for large Thiele modulus by adding higher-

order terms that convert washcoat profiles from simpler linear functions of 

the rates to hyperbolic functions.

• Plan a research note to archive hyperbolic function modification


