Small Washcoat Diffusion Resistance, Further Developments

Edward J Bissett

- Asymptotic solution for small dimensionless diffusion resistance, D_{inv}.
 - Introduced at 2014 CLEERS
 - "An Asymptotic Solution for Washcoat Pore Diffusion in Catalytic Monoliths", Bissett, Emission Control Science and Technology, Vol. 1, No. 1, pp. 3-16 (2015)
- Summary
 - Alternative to approaches using Thiele modulus, ad hoc linearization
 - Recognize that "standard" approach (no washcoat gradients) is $D_{inv} = 0$ limit.
 - Generalize to $O(D_{inv})$ to capture dominant effects of small diffusion resistance.
 - Practical aftertreatment regime of catalyst effectiveness, $D_{eff} \approx O(10^{-6} \text{ m}^2/\text{s})$
 - Permits all features common to standard approach
 - Large, fully nonlinear reaction system
 - Many species, coverages
 - Also dual washcoat layers
 - Equivalent computational speed
- Preview
 - How does this asymptotic solution fit with other approximations using Thiele modulus?
 - Small concentrations and mass transport limits

- Asymptotic solution of nonlinear reaction/diffusion equations
 - No linearizations to obtain effectiveness factors or internal mass transfer coefficients
 - Large systems of reactions, species, coverages
- However, can still do "simplest problem", single-species, linear reactant:

$$\frac{\partial^2 \omega}{\partial x^2} = \varphi^2 \omega \qquad 0 < x < 1$$

$$\frac{\partial \omega}{\partial x} = Bi(\omega - \omega_g) \qquad x = 0 \qquad \qquad \frac{\partial \omega}{\partial x} = 0 \qquad x = 1$$

- Thiele modulus, φ , satisfies $\varphi^2 = D_{inv}(-R/\omega)$ with rate constant, $k = -R/\omega$
- Biot number, $Bi = D_{inv}K$, controls size of gradients on each side of interface
- D_{inv} << 1 limit requires both φ and Bi small
- Sometimes done with simpler B.C., $\omega = 1$ at x = 0, but this obscures key points.
- Complete asymptotic analysis
 - Inspired by figure in "Overall mass transfer coefficients and controlling regimes in catalytic monoliths", Joshi et al., Chemical Engineering Science, Vol. 65, pp. 1729-1747(2010), Figure 2.

Figure 2 from Joshi, et al. (2010)

- Full solution available,
 - e.g., "The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Volume I, The Theory of the Steady State" Aris, Oxford University Press (1975)
- Either from full solution or governing equations. Simple exercise
- First divide into Bi regimes, then φ
- Some regimes are "distinguished limits", some are transitional sublimits

Bi = O(1)

- Down: increasing temperature
- Blue: kinetic control, $\omega_g \approx \overline{\omega}$
- Red: mass transfer control, $\omega_g \gg \omega_s$
- Mass transfer control =>
 - Kinetics fast enough that channel gas "sees" no surface concentration

- Channel gas satisfies
$$W \frac{\partial \omega_g}{\partial z} = -K \omega_g$$

- Reactor output independent of local solution of reaction/diffusion problem in washcoat

Bi >> 1

$\varphi^2 \ll 1$	$\omega(x) \sim \omega_g \left[1 - \varphi^2 \left(1 / Bi + x - x^2 / 2 \right) \right]$	$\mathcal{O}_g \approx \mathcal{O}_s \approx \overline{\mathcal{O}}$
$\varphi^2 = O(1)$	$\omega(x) \sim \frac{\omega_g}{\cosh \varphi} \cosh(\varphi(1-x))$	$\omega_g \approx \omega_s > \overline{\omega}$
$Bi \gg \varphi^2 \gg 1$	$\omega(x) \sim \omega_g \exp(-\varphi x)$	$\omega_g \approx \omega_s \gg \overline{\omega}$
$\varphi^2 = O(Bi)$	$\omega(x) \sim \frac{\omega_g}{(1 + \varphi / Bi)} \exp(-\varphi x)$	$\omega_g > \omega_s \gg \overline{\omega}$
$\varphi^2 \gg Bi$	$\omega(x) \sim \frac{\omega_g B i}{\varphi} \exp(-\varphi x)$	$\omega_g \gg \omega_s \gg \overline{\omega}$

- Corresponds to Joshi paper figure (D_{eff} ≈ O(10⁻⁷ m²/s))
 e.g., ω_g ≈ ω_s ≫ ω̄ only occurs when Bi >> 1
- As temperature (φ^2) increases, $\omega_s >> \omega$ before $\omega_g >> \omega_s$
- Kinetic and transport control occur in only 1 extreme regime each

Bi << 1

$$\begin{split} \varphi^{2} \ll Bi & \omega(x) \sim \omega_{g} \left[1 - \varphi^{2} \left(1 / Bi + x - x^{2} / 2 \right) \right] & \omega_{g} \approx \omega_{s} \approx \overline{\omega} \\ \varphi^{2} = O(Bi) & \omega(x) \sim \frac{\omega_{g}}{1 + \varphi^{2} / Bi} \left[1 + \varphi^{2} \left(\frac{\varphi^{2} / (3Bi)}{1 + \varphi^{2} / Bi} - x + x^{2} / 2 \right) \right] & \omega_{g} > \omega_{s} \approx \overline{\omega} \\ Bi \ll \varphi^{2} \ll 1 & \omega(x) \sim \frac{\omega_{g} Bi}{\varphi^{2}} \left\{ 1 - Bi / \varphi^{2} - \varphi^{2} \left[1 / 6 - (1 - x)^{2} / 2 \right] \right\} & \omega_{g} \gg \omega_{s} \approx \overline{\omega} \\ \varphi^{2} = O(1) & \omega(x) \sim \frac{\omega_{g} Bi}{\varphi \sinh \varphi} \cosh(\varphi(1 - x)) & \omega_{g} \gg \omega_{s} > \overline{\omega} \\ \varphi^{2} \gg 1 & \omega(x) \sim \frac{\omega_{g} Bi}{\varphi} \exp(-\varphi x) & \omega_{g} \gg \omega_{s} \gg \overline{\omega} \end{split}$$

- Our case of interest $(D_{inv} \ll 1)$: $Bi = D_{inv}K \ll 1$ and $\varphi^2 = D_{inv}(R/\omega) = O(Bi)$
 - Closest regime to "standard", $D_{inv} = 0$
 - 1st and 3rd rows are included sublimits of 2nd row
- Mass transport limitation achieved even while $\varphi^2 \ll O(1)$
- Solution in washcoat does not affect reactor output (ω_g) for $\omega_g >> \omega_s$

 $D_{inv} \ll 1$ for large nonlinear systems

Review from asymptotic solution (e.g. single layer)

$$K\left[\omega_{s}(\bar{\omega},\bar{R})-\omega_{g}\right]=\bar{R}, \qquad \bar{R}=R(\bar{\omega})$$

- used in determining $\bar{\omega}$
- Solution: $\omega(x) = \overline{\omega} + D_{inv}\overline{R}\left[1/6 (1-x)^2/2\right]$
- Consider reactant, *i*, $\overline{R}_i < 0$, $\varphi_i^2 = -D_{inv,i}\overline{R}_i / \overline{\omega}_i = O(D_{inv})$
 - If we increase φ_i^2 greater than $O(D_{inv})$:
 - "Simplest problem" \rightarrow mass transfer limit before O(1)
 - In general problem, cannot make rate more negative than $-K_i\omega_{gi}$
 - Instead, decrease $\bar{\omega}_i \rightarrow 0$
 - Flat profiles, $(D_{inv} \ll 1, \overline{R} \text{ bounded}, O(1)) \rightarrow \omega_s \rightarrow 0$
 - Transport limitation. Do not need detailed washcoat solution.
- Asymptotic solution depends on approximately flat profiles
 - Breakdown with increasing φ_i^2 manifests as $\omega(x) < 0$

- Can't get, don't need (mass transport) accurate asymptotic solution for $\varphi_i^2 = O(1)$ or larger
- Can't tolerate negative concentrations
- Several strategies attempted
 - Dual layer hardest, especially layer 1 reactant, layer 2 product
 - Must respect asymptotic solution for $\varphi_i^2 \ll 1$, where needed and applicable
 - Can introduce/manipulate higher-order terms: D_{inv}^2 and higher
- Best strategy so far hyperbolic functions from "simplest problem"

- Each species handled individually (suppress subscript)
- For products, rates positive, no changes required:

- Layer 1: $\omega(x) = \overline{\omega}^{(1)} + D_{inv}^{(1)}\overline{R}^{(1)}[1/6 - (1-x)^2/2] + D_{inv}^{(1)}\overline{R}^{(2)}(x-1/2)$

- Layer 2: $\omega(x) = \overline{\omega}^{(2)} + D_{inv}^{(2)} \overline{R}^{(2)} [1/6 - (2-x)^2/2]$

- Positivity requires arguments from algebraic equations for $\,\bar{\varpi}^{\scriptscriptstyle(1)}$ and $\,\bar{\varpi}^{\scriptscriptstyle(2)}$
- For reactants, $\overline{R} < 0$ - Layer 1: $\omega(x) = \overline{\omega}^{(1)} \varphi^{(1)} \frac{\cosh(\varphi^{(1)}(1-x))}{\sinh \varphi^{(1)}} + D_{inv}^{(1)} \overline{R}^{(2)} \frac{\sinh(\varphi^{(1)}(x-1/2))}{\varphi^{(1)}\cosh(\varphi^{(1)}/2)}$

- Layer 2:
$$\omega(x) = \overline{\omega}^{(2)} \varphi^{(2)} \frac{\cosh(\varphi^{(2)}(2-x))}{\sinh \varphi^{(2)}}$$

- When expanded for small φ , these agree with original formulas.
- Maintains $\omega(x) \ge 0$ for all φ
- Downsides: hyperbolic evaluations and increased nonlinearity of profiles

- Considerable experience in complex, challenging problems since last year. Current release of GT-Suite.
- Increasing Thiele modulus cannot not make the rate larger than the finite external mass transfer limit. It makes the washcoat concentrations small.
- Clarified how mass transport limit and small Biot number allows us to finesse large concentration gradients of large Thiele modulus
- Avoid negative concentrations for large Thiele modulus by adding higherorder terms that convert washcoat profiles from simpler linear functions of the rates to hyperbolic functions.
- Plan a research note to archive hyperbolic function modification

