Unclassified

Performance Evaluation of Mixed-Potential HC,
NO,, and NH; Sensors in Diesel and Lean
Gasoline Exhaust

2015 DOE Crosscut Lean/Low-temperature Exhaust Emissions Reduction
Simulation Workshop

April 27t-April 29t, 2015

Eric L. Brosha, Cortney R. Kreller, and Rangachary Mukundan
Los Alamos National Laboratory
Sensors and Electrochemical Devices Group, MPA-11
Los Alamos, New Mexico 87545

Vitaly Y. Prikhodko, Josh A. Pihl, Scott Curran, and James E. Parks Il
National Transportation Research Center
Oak Ridge National Laboratory
Knoxville, TN 37932

LA-UR-15-23023 ) > Los Alamos




Talk Outline

Research Motivations

Ammonia sensor pre-commercial Sensor
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NO, Sensors for lean burn engine applications

Use of selective catalyst reduction (SCR)
and exhaust gas recirculation (EGR)
systems combined with regenerative
particulate traps have reduced NO, and PM
tailpipe emissions from diesel vehicles in
recent years of mandated use.

Lack of a simple, robust and cost-sensitive
exhaust gas sensor technology hampers
efforts to monitor tailpipe emissions and to
maintain optimized SCR and EGR efficiency
over start-up and over the entire drive
cycle.

Availability of sensors would aid modeling
and testing of new and advanced drive
cycles/engine control modes.

We are working towards developing robust
and inexpensive sensors analogous to
commercial Zirconia oxygen sensors.

» Diesel and lean burn gasoline applications
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VDO/ NGK UniNOx Sensor
ZrO, -based multilayer sensor
with 3 oxygen pumps

Complex expensive sensor is
only commercial product today
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LANL using ESL HTCC Approach for Mixed Potential
NO, /HC and NH, Sensors: a simplified device

dense
> Devices as prepared by ESL->
» Good unifo?mirt’y in ! porous Y57 LaSrCrO Pt
performance between \s I
devices. Heater

> Price is dropping even for
R&D use.

e Significantly less complex sensor design: lower cost
to manufacture; less complicated design = lower
reject rate

* No fugitive spacers needed to complicate the HTCC
manufacturing process

e Airreference channel and internal oxygen
pumping cells not required

e Faster turn-on during start-up; *no issues with
water condensate initiating thermal shock and
failure

* No pumping channels to become blocked
* Two electrode electrochemical device

Protective overcoat

r Both HTCC Approaches

Ceramic platform / inert

d

Example of well defined channels that must be
created for electrochemical NOx sensors that
require pumping cells or referenceelectrodes.

AT
SR N

Cross section of HTCC manufactured device
showing imbedded heaters and gas channel.
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2"d generation ESL NO, — HC sensor: Addition of protective,

porous overcoat

In FY14, ESL prepared a batch of 10
NO, sensors with a non-conductive
(ionic and electronic) porous
overcoat applied to protect sensor
elements from particulate
impingement and exhaust gas
erosion.

Results:

—  Excellent compatibility with HTCC process
(negligible addition to fabrication costs) / CTE
match

— Does not affect sensor response
characteristics

— Does not act as a diffusion barrier to O,
under bias

Only substantive affect is to act as
a thermal blanket to retain heat

from the Pt resistive heater.

— Reduces power consumption which is an
advantage, otherwise the overcoat does not
affect device response characteristics.

3D X-ray
tomography
showing nominal
electrode
structure,
electrolyte layer,
and generally
crack and defect
free device.
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Characterization — Au/Pd Ammonia Sensors
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Durability Testing Results — Au/Pd Ammonia Sensors

* Automated heater voltage control program cycles sensor temperature at a desired
rate for number of desired cycles.

1000 cycles to 550°C and back to RT

* Cycling had no effect on device response. Response to NH; and tested interferents
were identical comparing as delivered device and after T cycling.

Au-Pd/YSZ/Pt Sensor Response at 525°C
Vs. Temperature Cycles
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Durability Testing Results — Au/Pd Ammonia Sensors post 1000
Temperature Cycles

VSZygu

xZ
#288/340

¢ Vn Bo%h 53\ M

Pt counter electrode Au/Pd working electrode

Delamination of the electrode occurred in the exposed region only — adhesion issue.

Pt electrode nominal —identical to NO,/HC sensors

Au/Pd alloy film under YSZ electrolyte appears normal. There is no change after T cycling.
Indicates weaker adhesion to substrate than metal oxide or Pt counter electrodes.
Should not be an issue.\

- d :
Cross-section of 2"d gen NH, sensor device Au/Pd alloy WE

Porous overcoat
Screen printed Pt lead /

\ - YSZ

Sensor platform ‘
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Experimental: Sensor Evaluation in Diesel and Lean Gasoline Exhaust

st H . :
v' 15t Campaign: March 2013. (Diesel) Phoeash of - v ' ' RINE
—  Primary focus, testing NOx response, sensor "‘Sidf of ; ‘A i 8o
control electronics, data acquisition system, and e
i | 3/8" swage
sensor packaging ::;zls:: 7 e o Nk
v/ 27 Campaign: January 2014. (Diesel) protective — Vetrobonch seal 0
. o - ORNL dyno
— Repeat NO,, EGR experiments with improved sensor Spsgl';“t';;f 4 R v
packaging surrounds
. active .
—  Perform cold-start experiments B e rmical ”I | sanqiu
element
* Capture NO, (post-DOC) and HC (post-DOC and e Honik ihe q
engine out) data sampling configurations device

Stainless steel protective sensor enclosure

— Acquire data from sensor power supplies to
understand behavior of sensor control systems

—  Perform EGR sweep experiments in NO, and HC
modes

v' 3 Campaign: March 2015.

— Simultaneous testing of NO,, HC, and
NH; sensors w/o attempting to repeat
dyno runs.

— Added 4t (HC) to measure impedance
of YSZ electrolyte to measure how

well heater resistance feedback and
power supplies fix operating T.

- Studies on BMW 120i lean gasoline engine
platform with Drivven open controller

9 » Los Alamos
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Experimental: Engine Experiments Performed in Week
of Testing During 374 Campaign

1. Start-up : collected HC, NO,, and NH, data before and after TWC.

2. Vary NO, emissions when operating in lean homogeneous and lean
stratified operation.
— Similar to EGR sweeps on the diesel engine in Campaigns 1 and 2.

3. Lambda sweeps (0.98<A<1.8) to determine characteristics of
individual sensors over large changes in background PO,

— Large changes in exhaust gas constituents.

4. Inject known concentrations of NH; from bottle post TWC and
upstream of NH; and NO, sensors during lean operation (PO,>5%)
to simulate slip events from SCR.

5. Use Gamry Reference 600 portable impedance spectrometer to
monitor HFR of YSZ electrolyte layer of a 4th sensor.

— Understand how uniform T of sensor and CRPS is at controlling heater R.
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Experimental: Engine Testing at ORNL NTRC

_ HC #2
Heater V-l logger NH, injection FID sensor HC sensor

ot —f

j = NO, & NH,
(Yo sensors
in parallel

Sensor power supplies

OAK TWC

3 Keithley 2400 to read sensor voltages
-R-—I‘I—.)—GE Y 8 » Los Alamos
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Engine testing: NH; sensor response
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NH; sensor response vs.
Ln[NH,/ppm] measured in
dynamometer and from lab

calibration using same level of

NO & NO, interferents.

Comparison of FTIR [NH;] to
[NH,] calculated from sensor =—> 50 |
response using lab calibration.
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Engine Testing: Ammonia Injection to Simulate Slip in SCR
System/Lean Burn

Torque [ft-Ib]
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Engine Testing: Ammonia Injection to Simulate Slip in SCR
System/Lean Burn

NH sensor response vs. Ln[NH ] Lab calibration NH_ sensor: T ~500°C
3 3 3 Pt-heater
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* Lab calibration reveals minimal influence of NO & NO, on NH; sensor response

* Dyno data shows significant “baseline” shift between varying NH, staircases:
CO, even at low levels (<10 ppm), is likely the dominant interferent species.

* Presence of H,O also influences sensor response with large difference between
“dry” and humidified, but insensitive to %RH. < Los Alamos
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Results: Ammonia Injection to Simulate Slip in SCR System/
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Engine testing: NO, sensor response
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Engine testing: NO, sensor response
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Results: Monitoring sensor element HFR and Pt-heater
resistance simultaneously
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Results: Monitoring sensor element HFR and Pt-heater
resistance simultaneously
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Summary

Latest campaign (March 2015): 4 sensors, NO,, NH;, and HC (2) sensors
logged independently upstream and downstream of the TWC respectively.
Multiple sensors simultaneously tested under identical dyno conditions.

— Collected data on BMW lean GDI 4 cyl engine (all 4 sensors)

— Collected data on 1.9L GM diesel (NH; naked and w/ porous overcoat)

GDI engine permitted first testing of MPES over wide Lambda (0.98<A<1.8).

New NH; sensor tested that shows strong promise to fulfill needs of a
sensor to monitor slip from an SCR in lean burn gasoline/diesel applications.

— Small amount of interference from NO, but this can be removed by running sensor at
higher T. Optimize before next campaign using data [NO,] data.

Confirmed data presented last year (diesel) that NO, sensor output good fit
to NO, in exhaust gas stream.

HC sensor worked well but not much to show: HC concentrations did not
change appreciably (pre-TWC) during these experiments.

Monitoring of YSZ HFR show good T stability during dyno runs (extra HC
sensor pre-TWC). Continue with adequate T control using R,..

Porous overcoat did not affect sensor response aside from T.
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Future Work

* Locate “sensor rack” in unoccupied area of dyno cell and leave sensors in a
more robust, permanent arrangement.

— Continue to test multiple sensors simultaneously, piggy-backed to NRTC testing
schedule.

— Use switches to isolate sensors from analytical instrumentation to maintain small
impact factor to NRTC testing schedule.

— Opportunity to collect durability data.
* Test asensor in direct contact with exhaust gas to avoid slipstream testing —
test new in situ probe packaging.
* Focus on diesel testing and lean burn conditions testing — technology more
mature for this application than stoichiometric operation.
— Response from sensors during rich burn operation more complicated to explain.

* Move to exclusive testing of prototype sensors from ESL that have the
protective ceramic overcoat applied.

e Path forward to partner with commercial Tier 1 supplier on track (resulting
from LANL hosted Jan. ‘15 Webinar).

OAK pa
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2"d generation NO, / HC sensor: CLEERS ‘14 Talk

Sensor response to application of current bias
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2"d generation NO, / HC sensor: CLEERS ‘14 Talk

Sensor response to application of current bias
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