Resolving N_2O formation dynamics during lean/rich cycling of a commercial LNT

Jae-Soon Choi, Josh A. Pihl, Mi-Young Kim, Todd J. Toops, William P. Partridge
Oak Ridge National Laboratory

Petr Kočí, David Mráček, Šárka Bártová, Miloš Marek
University of Chemistry and Technology, Prague

CLEERS Workshop
April 28, 2015
Dearborn, MI
LNTs remove NO\textsubscript{x} via cyclic lean/rich operation

Storage (lean)
30-120 s

Regeneration (rich)
1-10 s

complex spatiotemporal development of regeneration reactions
Significant N_2O can form during LNT regeneration

- Cycle-averaged yield can reach ~20% (lab reactor study, 60/5-s cycling, no reductant in lean)
- Sensitive to temperature and reductant type
- Two N_2O peaks
 - At regeneration inception: primary peak
 - At rich-to-lean transition: secondary peak
- Mechanisms not well understood

![Temporal profiles of N_2O formation](image)

- Cycle-averaged data

- NITROUS OXIDE

 strong greenhouse gas (need to minimize)
This study aimed to clarify N₂O formation mechanisms

Develop N₂O models & mitigation strategies

Experiments
- Commercial catalysts
 BMW Lean GDI LNT
- Bench reactor experiments
 Fast lean/rich cycling
 Transient response method
- Specialized measurements
 High speed FTIR
 SpaciMS
 \(^{15}\)NO
 DRIFTS

Simulation & Analysis

UNITED STATES
NATIONAL SCIENCE FOUNDATION

OAK RIDGE
National Laboratory
Results

N_2O formation in rich phase (regeneration)
NO\textsubscript{x} reduction over incompletely reduced PGM sites leads to N\textsubscript{2}O

Spatial profile along catalyst

- N\textsubscript{2}O formed locally at the reduction front
 - Reductants first reach oxidized zone (early regen)

- N\textsubscript{2}O yields highest near “light-off” temperature for each reductant type
 - H\textsubscript{2}, NH\textsubscript{3} (intermediate), CO, HCs

NO reduction over partially reduced PGM

*: PGM sites

2NO

N\textsubscript{2}O

greater chance to have this surface composition
Implementation of variable selectivity in global kinetic model

- **Local selectivity** of the stored NO\textsubscript{x} reduction to NO, N\textsubscript{2}O, N\textsubscript{2} or NH\textsubscript{3} linked with coverage of oxidative or reductive species on locally available PGM sites
- Approximate **selectivity functions** are used in the global kinetics LNT model

Simplified PGM state reactions

- \(\text{Pt} + \frac{1}{2} \text{O}_2 \rightarrow \text{Pt-O} \)
- \(\text{Pt-O} + \text{CO} \rightarrow \text{Pt} + \text{CO}_2 \)
- \(\text{Pt-O} + \text{H}_2 \rightarrow \text{Pt} + \text{H}_2\text{O} \)
- \(\text{Pt-O} + \frac{1}{9} \text{C}_3\text{H}_6 \rightarrow \text{Pt} + \frac{1}{3} \text{H}_2\text{O} + \frac{1}{3} \text{CO}_2 \)
- \(\text{Pt-O} + \frac{2}{5} \text{NH}_3 \rightarrow \frac{2}{5} \text{NO} + \frac{3}{5} \text{H}_2\text{O} \)

(Pt-O represents a lumped characteristic of the PGM state, not the real oxygen coverage)
Implementation of variable selectivity in global kinetic model (cont.)

- Full range of possible N-products considered

\[
\begin{align*}
\text{Ba(NO}_3\text{)}_2 + S\text{NO}^*3 \text{ H}_2 + S\text{N}_2\text{O}^*4 \text{ H}_2 + S\text{N}_2^*5 \text{ H}_2 + S\text{NH}_3^*8 \text{ H}_2 & \rightarrow \\
\rightarrow \text{BaO} + S\text{NO}^*2 \text{ NO} + S\text{N}_2\text{O}^*1 \text{ N}_2\text{O} + S\text{N}_2^*1 \text{ N}_2 + S\text{NH}_3^*2 \text{ NH}_3 + ... \text{ H}_2\text{O}
\end{align*}
\]

\[
\begin{align*}
\text{Ba(NO}_3\text{)}_2 + S\text{NO}^*3 \text{ CO} + S\text{N}_2\text{O}^*4 \text{ CO} + S\text{N}_2^*5 \text{ CO} + S\text{NH}_3^*(8 \text{ CO} + 3 \text{ H}_2\text{O}) & \rightarrow \\
\rightarrow \text{BaO} + S\text{NO}^*2 \text{ NO} + S\text{N}_2\text{O}^*1 \text{ N}_2\text{O} + S\text{N}_2^*1 \text{ N}_2 + S\text{NH}_3^*2 \text{ NH}_3 + ... \text{ CO}_2
\end{align*}
\]

\[
\begin{align*}
\text{Ba(NO}_3\text{)}_2 + S\text{NO}^*3/9 \text{ C}_3\text{H}_6 + S\text{N}_2\text{O}^*4/9 \text{ C}_3\text{H}_6 + S\text{N}_2^*5/9 \text{ C}_3\text{H}_6 & \rightarrow \\
\rightarrow \text{BaO} + S\text{NO}^*2 \text{ NO} + S\text{N}_2\text{O}^*1 \text{ N}_2\text{O} + S\text{N}_2^*1 \text{ N}_2 + ... \text{ CO}_2 + ... \text{ H}_2\text{O}
\end{align*}
\]

\[
\begin{align*}
\text{Ba(NO}_3\text{)}_2 + S\text{NO}^*6/5 \text{ NH}_3 + S\text{N}_2\text{O}^*2 \text{ NH}_3 + S\text{N}_2^*10/3 \text{ NH}_3 & \rightarrow \\
\rightarrow \text{BaO} + S\text{NO}^*16/5 \text{ NO} + S\text{N}_2\text{O}^*2 \text{ N}_2\text{O} + S\text{N}_2^*8/3 \text{ N}_2 + ... \text{ CO}_2 + ... \text{ H}_2\text{O}
\end{align*}
\]

- High N\textsubscript{2} selectivity of OSC reduction with NH\textsubscript{3}

\[
\text{Ce}_2\text{O}_4 + 2/3 \text{ NH}_3 \rightarrow \text{Ce}_2\text{O}_3 + 1/3 \text{ N}_2 + \text{H}_2\text{O}
\]

Results

N_2O formation at rich-to-lean transition

“secondary peak”
NO\textsubscript{x} reduction can be significant at rich-to-lean transitions

- **Regeneration by CO at 300°C**
 - High conversion (~100 %)
 - No breakthrough of NO\textsubscript{x} in lean

\[L=0 \text{ (inlet)} \quad \quad \text{ (outlet) } L=1 \]

\[\text{NO}_x \text{ storage zone} \quad \quad \text{O}_2 \text{ storage only} \]

![Graphs showing NO\textsubscript{x} and O\textsubscript{2} storage](image-url)
NO$_x$ reduction can be significant at rich-to-lean transitions

- **Regeneration by CO at 300°C**
 - High conversion (~100%)
 - No breakthrough of NO$_x$ in lean

L=0 (inlet) (outlet) L=1

- NO$_x$ storage zone
- O$_2$ storage only
Secondary N_2O more significant with less complete regeneration

- Regeneration by C_3H_6 at 250 °C
 - Slow regen, low conversion
 - NO_x breakthrough in lean phase
 - Residual stored NOx at end of regen.

$L=0$ (inlet), $(outlet) \ L=1$

NO_x storage zone

Graphs showing:

- N_2 and N_2O emissions over time at different L values (0.25L, 0.50L, 0.75L, 1.00L).
- The emissions are labeled as primary (N_2) and secondary (N_2O) for both lean and rich phases.

RIDGE Laboratory
Secondary N\textsubscript{2}O more significant with less complete regeneration (cont.)

- Contribution of secondary peaks increases with decreasing regeneration length
 - More residual NO\textsubscript{x} remaining on the surface
- Secondary peaks observed up to 400 °C for short regeneration
 - May be relevant to high-temperature activity during rapid cycling (Di-Air)
- Secondary N\textsubscript{2}O most significant around light-off temperatures (as for primary N\textsubscript{2}O)
A variety of reductive species available on the surface at the end of regeneration

- Proposed general mechanism for secondary peaks formation: residual stored NO$_x$ + adsorbed reductants & intermediates
- High PGM-CO coverage – “simple” adsorbed reductant can contribute to secondary N$_2$ and N$_2$O formation
- Accumulation of isocyanate (-NCO) species
- Other potential surface reductants: NH$_3$, HCs

After switch back to lean:
- O$_2$ + –NCO highly selective to N$_2$ → not a source of the secondary N$_2$O peak
- Interactions of –NCO & PGM-CO with the NO$_x$ released from the storage sites → secondary N$_2$O
Extension of global kinetic model to capture peaks at rich-to-lean transitions

Selectivity at rich to lean transition is determined by:

- Amount of residual stored NO\textsubscript{x} and adsorbed reductants/intermediates
 - Reductant ads/des steps added to the model
 \[\text{H}_2 + * \leftrightarrow \text{H}_2^* \]
 \[\text{CO} + * \leftrightarrow \text{CO}^* \]
 \[\text{C}_3\text{H}_6 + * \leftrightarrow \text{C}_3\text{H}_6^* \]
 \[\text{NH}_3 + * \leftrightarrow \text{NH}_3^* \]

 \[\Theta_{\text{void}} = 1 - (\Theta_{\text{H}_2^*} + \Theta_{\text{CO}^*} + \Theta_{\text{C}_3\text{H}_6^*} + \Theta_{\text{NH}_3^*}) \]

- PGM oxidation rate
Gained mechanistic insights led to an enhanced LNT model

Model prediction of N_2O dynamics

BMW LNT (250 °C, 30000 hr$^{-1}$)
All: 300 ppm NO, 5% H_2O, inert balance
Lean (60 s): 10% O_2
Rich (5 s): 0.378% C_3H_6

BMW LNT (250 °C, 30000 hr$^{-1}$)
All: 300 ppm NO, 5% H_2O, inert balance
Lean (60 s): 10% O_2
Rich (5 s): 3.4% CO
Lambda control impact on secondary peak selectivity

BMW LNT (225 °C, 30000 hr⁻¹)
All: 300 ppm NO, 5% H₂O, inert balance
Lean (60 s): 10% O₂
Rich (5 s): 3.4% CO
Slightly lean (6 or 25 s): 0.5% CO, 0.28% O₂

...and N₂O control strategies
Summary

• LNT regeneration dynamics & mechanisms controlling N-product selectivity clarified by reactor study and modeling

• Primary N₂O peak in rich phase
 — Caused by reaction btwn. N* + NO* formed over partially reduced PGM
 — High at early regen. times, at low temperature, with less effective reductants
 — Selectivity determined by NOₓ release rate + PGM reduction rate

• Secondary N₂O peak at rich-to-lean transition
 — Caused by reaction btwn. residual NOₓ and reductive species on the surface
 — Selectivity determined by amount of residual stored NOₓ and adsorbed reductants/intermediates + PGM oxidation rate

• Insights led to enhanced kinetic model & N₂O mitigation strategies
 — Avoid regeneration at low temperatures
 — Minimize hydrocarbon content at low-intermediate temperatures (via engine control, reforming catalyst utilization upstream)
 — Lambda control after rich regeneration
Acknowledgements

Funding

• U.S. Department of Energy, Vehicle Technologies Office
 – Program managers: Gurpreet Singh, Ken Howden, Leo Breton

• Czech Ministry of Education
 – Kontakt II project: LH 12086

Jae-Soon Choi
choijs@ornl.gov

Petr Kočí
petr.koci@vscht.cz
Additional Slides
N$_2$O trend consistent w/ PGM redox state

- N$_2$O maximized near light-off temperature for a given reductant
 - $H_2 < CO < C_3H_6$ (consistent with reduction efficiency)
- One exception: H_2 produces high N$_2$O above light-off T (<150 °C)
 - Likely due to large NH$_3$-intermediate formation (major product)
 - NH$_3$ is not effective at low temperatures
Oxidation of “stored” NH$_3$ not likely a major contributor to 2nd N$_2$O peak

- Gas-phase NO in lean not critical (results not shown)

Regeneration with H$_2$ at T=150°C

Note: complete NO$_x$ conversion (no breakthrough) in both cases

- Without CO$_2$, higher NH$_3$, but negligible secondary N$_2$O
- CO$_2$ involved in surface intermediate formation?
Lean-phase reduction of residual surface NO\textsubscript{x} leads to secondary N\textsubscript{2}O

Regeneration with H\textsubscript{2} at T=150°C

- CO\textsubscript{2} not critical in secondary N\textsubscript{2}O formation, but seems to “promote” by delaying regeneration (see NO\textsubscript{x} breakthrough profiles)
Possible surface reductants for secondary \(\text{N}_2\text{O} \) formation during regeneration with \(\text{H}_2 \) (150-200 °C): \(\text{NH}_3, \text{ C} \)

- Switch from \(\text{NH}_3 \) (rich) to inert \(\rightarrow \) 2\(^{nd} \) \(\text{N}_2\text{O} \)
 - Destabilization of \(\text{NH}_3 \) strongly held by PGM and reaction with \(\text{NO}_x \)

Regeneration with \(\text{NH}_3 \) at \(T=200^\circ\text{C} \) with \(\text{CO}_2 \)

Regeneration with \(\text{H}_2 \) (DRIFTS) at \(T=200^\circ\text{C} \) with \(\text{CO}_2 \)

- \(\text{-NCO} \) not observed
- PGM-CO formed readily
- Inhibition of reactions over PGM
Possible surface reductants responsible for secondary N\textsubscript{2}O formation during regeneration with CO (200-250 °C): CO

- **Regeneration with CO at T=250°C**

 ![Graph showing regeneration with CO at T=250°C](image)

- Stable PGM-CO formed in rich & gradually disappeared in lean
- -NCO formed but not very stable
- NH\textsubscript{3} is effective at this temperature (not strongly bound to PGM)

 → CO adsorbed on PGM sites likely reductant
Possible surface reductants responsible for secondary \(\text{N}_2\text{O} \) formation during regeneration with \(\text{C}_3\text{H}_6 \) (250-300 °C): \(\text{C}_x\text{H}_y \)

Regeneration with \(\text{C}_3\text{H}_6 \) at \(T=300^\circ\text{C} \)

- No significant -NCO or PGM-CO on the surface (DRIFTS results not shown)
- Sharp CO\(_2\) peak observed at rich/lean transition indicates presence of surface C species (results not shown)
- \(\text{H}_2 \), CO, \(\text{NH}_3 \) all effective at 300°C (not strongly bound to PGM)

\[\rightarrow \text{PGM-} \text{H}_x\text{C}_y \text{ likely reductant} \]