Resolving N₂O formation dynamics during lean/rich cycling of a commercial LNT

Jae-Soon Choi, Josh A. Pihl, Mi-Young Kim, Todd J. Toops, William P. Partridge Oak Ridge National Laboratory

Petr Kočí, David Mráček, Šárka Bártová, Miloš Marek

University of Chemistry and Technology, Prague

CLEERS Workshop April 28, 2015 Dearborn, MI

ORNL is managed by UT-Battelle for the US Department of Energy

Significant N₂O can form during LNT regeneration

- Cycle-averaged yield can reach ~20% (lab reactor study, 60/5-s cycling, no reductant in lean)
- Sensitive to temperature and reductant type
- Two N₂O peaks
 - At regeneration inception: primary peak
 - At rich-to-lean transition: secondary peak
- Mechanisms not well understood

UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE

This study aimed to clarify N₂O **UCT Prague-ORNL** formation mechanisms collaboration (2010-2015)

Experiments Develop N₂O models & mitigation strategies Commercial catalysts BMW Lean GDI LNT Rich Ê 1600 Lean udd)²1200 HN 800 NH₃ 2 🛞 $S_{NO} + S_{N2O} + S_{N2} + S_{NH3} = 1.0$ in entire range Bench reactor experiments co 8 sec V20, 400 reduction 0.8 NH₃ N₂O NO Fast lean/rich cycling Local reduction of PGM sites at Ê 1600 lean lean liahth 3 0.6 the rich regeneration front id 1200 Selectivity of NO_X Transient response method 2 🖇 Ϋ́ N₂O 800 N₂ NH: 8 small sec. N20, 0.4 400 Specialized measurements N₂O (ju 1600 dig 1200 lean 3 High speed FTIR 0.2 2 8 800 8 **SpaciMS** no sec 20 400 N₂O 0 (Covered by 0.2 0.4 0.6 0.8 Covered by ¹⁵NO 50 55 60 65 70 75 80 85 90 95 100 reductive species PGM sites redox state oxidative species t (s) - N₂O - NH₃ - CO DRIFTS **Simulation & Analysis** 1400 1400 (mdd) O^ZN ¹²⁰⁰ ¹⁰⁰⁰ ⁰⁰⁰ ⁴⁰⁰ Conversion (%) 08 08 08 08 NO_x conv N₂C 1200 80 1000 **(udd**) ⁰⁶ Yield (%) NO 800 ٣ 600 SpaciMS 400 NH 20 200 200 0 Cat-In Cat-Out 100 200 300 400 500 600 40 45 50 55 60 65 70 L (mm) Temperature (°C) Time (s) OAK RIDGE UNIVERSITY OF

Results

N₂O formation in rich phase (regeneration)

NO_x reduction over incompletely reduced PGM sites leads to N_2O

Spatial profile along catalyst reduction front moves CO H₂

N₂O

4

z (cm)

• N₂O formed locally at the reduction front

7

 \rightarrow outlet

greater chance to have this surface composition

- Reductants first reach oxidized zone (early regen)

5

6

N₂O yields highest near "light-off" temperature for each reductant type

8

-H₂, NH₃ (intermediate), CO, HCs

NH₃

1

 $0 \quad 1$

2

3

Implementation of variable selectivity in global kinetic model

- Local selectivity of the stored NO_x reduction to NO, N₂O, N₂ or NH₃ linked with coverage of oxidative or reductive species on locally available PGM sites
- Approximate selectivity functions are used in the global kinetics LNT model

Implementation of variable selectivity in global kinetic model (cont.)

Full range of possible N-products considered

$$\begin{array}{l} Ba(NO_{3})_{2} + S_{N0}^{*3} H_{2} + S_{N20}^{*4} H_{2} + S_{N2}^{*5} H_{2} + S_{NH3}^{*8} H_{2} \rightarrow \\ \rightarrow BaO + S_{N0}^{*2} NO + S_{N20}^{*1} N_{2}O + S_{N2}^{*1} N_{2} + S_{NH3}^{*2} NH_{3} + \dots H_{2}O \\ Ba(NO_{3})_{2} + S_{N0}^{*3} CO + S_{N20}^{*4} CO + S_{N2}^{*5} CO + S_{NH3}^{*8} (8 CO + 3 H_{2}O) \rightarrow \\ \rightarrow BaO + S_{N0}^{*2} NO + S_{N20}^{*1} N_{2}O + S_{N2}^{*1} N_{2} + S_{NH3}^{*2} NH_{3} + \dots CO_{2} \\ Ba(NO_{3})_{2} + S_{N0}^{*3} / 9 C_{3}H_{6} + S_{N20}^{*4} / 9 C_{3}H_{6} + S_{N2}^{*5} / 9 C_{3}H_{6} \rightarrow \\ \rightarrow BaO + S_{N0}^{*2} NO + S_{N20}^{*1} N_{2}O + S_{N2}^{*1} N_{2} + \dots CO_{2} + \dots H_{2}O \\ Ba(NO_{3})_{2} + S_{N0}^{*6} / 5 NH_{3} + S_{N20}^{*2} NH_{3} + S_{N2}^{*1} 0 / 3 NH_{3} \rightarrow \end{array}$$

 $\rightarrow BaO^{3/2} + S_{NO}^{*16/5} NO^{-1} + S_{N20}^{*2} N_2O^{-1} + S_{N2}^{*8/3} N_2^{-1} + \dots CO_2^{-1} + \dots H_2O^{-1}$

Results

N₂O formation at rich-tolean transition

NO_x reduction can be significant at rich-tolean transitions

Secondary N₂O more significant with less complete regeneration (cont.)

- Contribution of secondary peaks increases with decreasing regeneration length
 - More residual NO_x remaining on the surface
- Secondary peaks observed up to 400 °C for short regeneration
 - May be relevant to high-temperature activity during rapid cycling (Di-Air)
- Secondary N₂O most significant around light-off temperatures (as for primary N₂O)

UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE

National Laboratory

A variety of reductive species available on the surface at the end of regeneration

- Proposed general mechanism for secondary peaks formation:
 residual stored NO_x + adsorbed reductants & intermediates
- High **PGM-CO** coverage "simple" adsorbed reductant can contribute to secondary N_2 and N_2O formation
- Accumulation of isocyanate (-NCO) species
- Other potential surface reductants: NH₃, HCs

After switch back to lean:

- O₂ + –NCO highly selective to N₂
 → not a source of the secondary N₂O peak
- Interactions of –NCO & PGM-CO with the NO_x released from the storage sites → secondary N₂O

Extension of global kinetic model to capture peaks at rich-to-lean transitions

Selectivity at rich to lean transition is determined by:

- Amount of residual stored NO_x and adsorbed reductants/intermediates
 - Reductant ads/des steps added to the model

$$\begin{array}{c} \mathsf{H}_2 \texttt{+}^* \leftrightarrow \mathsf{H}_2^* \\ \mathsf{CO} \texttt{+}^* \leftrightarrow \mathsf{CO}^* \\ \mathsf{C}_3 \mathsf{H}_6 \texttt{+}^* \leftrightarrow \mathsf{C}_3 \mathsf{H}_6^* \\ \mathsf{NH}_3 \texttt{+}^* \leftrightarrow \mathsf{NH}_3^* \end{array}$$

 $\Theta^{\text{void}} = \mathbf{1} - (\Theta_{\text{H2}^*} + \Theta_{\text{CO}^*} + \Theta_{\text{C3H6}^*} + \Theta_{\text{NH3}^*})$

PGM oxidation rate

- Leskovjan, Mráček, Kočí, Proceedings of the 41st International Conference of Slovak Society of Chemical Engineering (2014) 743-749.
- Bártová, Kočí, Mráček, Marek, Pihl, Choi, Toops, Partridge, Catalysis Today 231 (2014) 145-154.
- Mráček, Kočí, Marek, Choi, Pihl, Partridge, Applied Catalysis B: Environmental 166-167 (2015) 509-517.

Gained mechanistic insights led to an enhanced LNT model

Model prediction of N₂O dynamics

BMW LNT (250 °C, 30000 hr⁻¹) All: 300 ppm NO, 5% H₂O, inert balance Lean (60 s): 10% O₂ Rich (5 s): 0.378% C₃H₆ **BMW LNT (250 °C, 30000 hr⁻¹)** All: 300 ppm NO, 5% H₂O, inert balance Lean (60 s): 10% O₂ Rich (5 s): 3.4% CO

Summary

- LNT regeneration dynamics & mechanisms controlling N-product selectivity clarified by reactor study and modeling
- Primary N₂O peak in rich phase
 - Caused by reaction btwn. N* + NO* formed over partially reduced PGM
 - High at early regen. times, at low temperature, with less effective reductants
 - Selectivity determined by NO_x release rate + PGM reduction rate
- Secondary N₂O peak at rich-to-lean transition
 - Caused by reaction btwn. residual NO_x and reductive species on the surface
 - Selectivity determined by amount of residual stored NO_x and adsorbed reductants/intermediates + PGM oxidation rate

Insights led to enhanced kinetic model & N₂O mitigation strategies

- Avoid regeneration at low temperatures
- Minimize hydrocarbon content at low-intermediate temperatures (via engine control, reforming catalyst utilization upstream)
- Lambda control after rich regeneration

Acknowledgements

Funding

- U.S. Department of Energy, Vehicle Technologies Office
 - Program managers: Gurpreet Singh, Ken Howden, Leo Breton

Czech Ministry of Education

– Kontakt II project: LH 12086

Jae-Soon Choi choijs@ornl.gov Petr Kočí petr.koci@vscht.cz

Additional Slides

N₂O trend consistent w/ PGM redox state

- N₂O maximized near light-off temperature for a given reductant
 - H₂ < CO < C₃H₆ (consistent with reduction efficiency)
- One exception: H₂ produces high N₂O above light-off T (<150 °C)
 - Likely due to large NH₃-intermediate formation (major product)
 - NH₃ is not effective at low temperatures

Oxidation of "stored" NH_3 not likely a major contributor to $2^{nd} N_2 O$ peak

Gas-phase NO in lean not critical (results not shown)

Regeneration with H₂ at T=150°C

Note: complete NO_x conversion (no breakthrough) in both cases

- Without CO₂, higher NH₃, but negligible secondary N₂O
- CO₂ involved in surface intermediate formation?

UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE

OAK RIDGE National Laboratory

Lean-phase reduction of residual surface NO_x leads to secondary N_2O

by delaying regeneration (see NO_x breakthrough profiles)

OAK RIDGE National Laboratory

Possible surface reductants for secondary N₂O formation during regeneration with H₂ (150-200 °C): NH₃, C

- Switch from NH_3 (rich) to inert $\rightarrow 2^{nd} N_2O$
 - Destabilization of $\rm NH_3$ strongly held by PGM and reaction with $\rm NO_x$

- -NCO not observed
- PGM-CO formed readily
- Inhibition of reactions over PGM
 ©AK RIDGE National Laboratory

Possible surface reductants responsible for secondary N₂O formation during regeneration with CO (200-250 °C): CO

Regeneration with CO at T=250°C

- Stable PGM-CO formed in rich & gradually disappeared in lean
- -NCO formed but not very stable
- NH₃ is effective at this temperature (not strongly bound to PGM)

 \rightarrow CO adsorbed on PGM sites likely reductant

UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE

OAK RIDGE National Laboratory

Possible surface reductants responsible for secondary N_2O formation during regeneration with C_3H_6 (250-300 °C): C_xH_y

Regeneration with C₃H₆ at T=300°C

- No significant -NCO or PGM-CO on the surface (DRIFTS results not shown)
- Sharp CO₂ peak observed at rich/lean transition indicates presence of surface C species (results not shown)
- H₂, CO, NH₃ all effective at 300°C (not strongly bound to PGM)

 \rightarrow PGM-H_xC_y likely reductant

OAK RIDGE National Laboratory

