

Cullen College of Engineering Department of Chemical and Biomolecular Engineering

TEXAS CENTER FOR CLEAN ENGINES, EMISSIONS & FUELS University of Houston

Fast Cycling NSR + SCR Over Dual-Layer Catalysts

Yang Zheng, Mengmeng Li, Dan Luss, and Mike Harold

Department of Chemical and Biomolecular Engineering Texas Center for Clean Engines, Emissions & Fuels University of Houston, Houston TX

2015 CLEERS Meeting

Acknowledgements: NSF + DOE, BASF, UH-TXCEF

Rapid HC Pulsing on NOx Storage & Reduction Catalyst

Lean-burn emission control: an enabler of clean and fuel-efficient light-duty vehicles

Evidence for Low Temperature Enhancement?

Lean-burn emission control: an enabler of clean and fuel-efficient light-duty vehicles

Confirmation Study of Rapid Cycling

Feed: 5% O_2 & 700 ppm NO Rich Phase $C_3H_6 = 1.75\%$ Rich duty cycle = 14.3%

[1] Bisaiji, Y., Yoshida, K., Inoue , M., Takagi, N. et al.SAE Int. J. Fuels Lubr. 5(3):2012 [2] Perng, C.C.Y., Easterling, V.G., Harold, M.P., Catalysis Today 231:125-134, 2014,

Further Evidence for Low Temperature Enhancement

Feed: 5% O_2 & 700 ppm NO Rich Phase $C_3H_6 = 1.75\%$ Rich duty cycle = 14.3%

Rapid Injection Mechanism

- Only NOx stored in close proximity to Pt is utilized
- Generation of "RNCO" species on Pt and proximal storage sites leads to highly selective conversion to N₂
- > Key: Intermediate species survives higher temperatures
- Need time for intermediate to accumulate on catalyst

Questions

- Is there low temperature enhancement of NOx conversion during rapid cycling?
- Does the choice of hydrocarbon matter?
- How important are nonisothermal effects?
- Could addition of SCR function help?
- What is the optimal catalyst composition & architecture and operating strategy?
- Can this process be modeled?

Objectives of Current Study

- Conduct systematic study on effect rapid hydrocarbon injection using various reductants during fast cycling NSR
- o Investigate behavior over wide temperature range
- Evaluate impact of adding SCR function
- Provide further insight into fast cycling effects & mechanism

Feed Conditions

Rich cycle duty (rich period/cycle time) is fixed at **14.3%**, 60/10s, 30/5s, 6/1s (0.014Hz) (0.028Hz) (0.14Hz)

All Catalysts were aged at 700 °C for 33h in air

225 °C feed temperature

a) LNT 30/5s NO_X Outlet (ppm) Catalyst Temp. (°C) NOx Conv.: 54% C₃H₆ Conv.: 9% C₃H₆ Outlet (ppm) Ð Time (s) C₃H₆ feed 1.8%

Impact of Cycling Frequency

Impact of Cycling Frequency

Evidence for a Non-NH₃ Mechanism

Suggests non-NH₃ mechanism for NOx reduction

啩

Reductant Comparison: Propene vs. Propane

18

며

Fast Cycling with Propene + Propane Mixture

 Replacement of fraction of C₃H₈ with C₃H₆ leads to significant enhancement in NOx conversion

Fast Cycling with Propene + Propane Mixture

 Effect of C₃H₆ addition is nonlinear

Impact of SCR Top Layer

Impact of Cycling Frequency

Impact of SCR Top Layer

Non NH₃ pathway: LNT-assisted HC-SCR by Ford

[1] Xu, L., McCabe, R., Dearth, M., and Ruona, W., SAE Int. J. Fuels Lubr. 3(1): 37-49, 2010

Modeling Challenge

- Sensitive dependence on pulse shape & frequency
- Highly nonisothermal
- Rapid transients may preclude classical approach of mass & heat transfer coefficients
- May require full-blown simulation of 3-D mass, heat & momentum balances with detailed chemistry
- Fast cycling involves complex storage & reaction chemistry
- etc.

Conclusions

- Higher NO_x conversion at increased injections frequency using propylene
- High frequency injection gives elevated buy nearly timeinvariant catalyst temperature
- Enhancement appears to span wider temperature window than first communicated
- Reductant type important: Enhancement not observed using C₃H₈ but is observed using C₃H₆
- Mechanism for N₂ formation different than conventional NSR; e.g. RNCO + NOx → N₂
- Addition of SCR top layer beneficial to conversion
- Opens the door for development of tailored multifunctional catalysts
- Slip of hydrocarbon may require downstream elimination measures

Acknowledgements

TEXAS CENTER FOR CLEAN ENGINES, EMISSIONS & FUELS University of Houston

Thank you!

Questions?

Top-layer impact

