#### Deactivation of Cu/SAPO-34 During Low-Temperature NH<sub>3</sub>-SCR

#### <u>Kirsten Leistner<sup>1</sup></u> and Louise Olsson<sup>1</sup>

<sup>1</sup>Chemical Engineering (KRT), Competence Centre for Catalysis (KCK), Chalmers University of Technology

CLEERS- April 2015





# Small-pore zeolites less prone to HT collapse of lattice.

Is the Cu/SAPO-34 structure stable at low T?

#### **Experimental Methods**

SAPO-34: hydrothermal synthesis

|              | Aqueous ion exchange  |              |
|--------------|-----------------------|--------------|
| Cu/SAPO-34   | Aqueous ion exentinge | Cu/SAPO-34   |
| 1.27 wt.% Cu |                       | 2.60 wt.% Cu |



Characterisation of Cu/SAPO-34 before (powder) and after (scraped off monolith) experiments



#### SCR over Cu/SAPO-34 (2.60 wt.%Cu)



#### SCR over Cu/SAPO-34 (2.60 wt.%Cu)



Loss of activity: from 87 to 66%

No H<sub>2</sub>O: Loss of activity smaller



## SCR over Cu/SAPO-34 (2.60 wt.%Cu) Only water vapour at 70 °C





#### Loss of Activity Over Time (2.60 wt.%Cu)





#### Loss of Crystallinity?





# NH<sub>3</sub> Adsorption over Cu/SAPO-34 (2.60 wt.%Cu)



NH<sub>3</sub> storage identical after ca. 4.5h exposure to water vapour at 70 °C

## $H_2$ -TPR



Hydrogen consumption decreased by 26 and 38% (or less: up to 13% binder in "after" samples) - small compared to loss of activity

#### Conclusions

- Synthesis of 1.27 wt.% Cu and 2.60 wt.% Cu Cu/SAPO-34
- 14 h enough for complete deactivation
- 600 °C treatment does not reverse deact.
- Plugging of pores and blocking of sites ruled out
- Breakage of crystal framework not dominating

#### $\rightarrow$ transformation of copper sites

#### Acknowledgements

This study was performed at Chemical Reaction Engineering and within the Competence Centre for Catalysis at Chalmers University of Technology.

The financial support from the Swedish Research Council is gratefully acknowledged.