

Model-based analysis of SCRcoated filters performance aspects

D. Karamitros, S.A. Skarlis

Exothermia SA, Greece

G. Koltsakis

Aristotle University of Thessaloniki, Greece

From SCR to SCRonF

Impact of catalyst zoning and layering?

- NOx conversion at clean state
- Soot and ash impact on NOx conversion
- NH₃-SCR impact on soot oxidation rate

Only standard SCR is considered with alpha =1

Same SCR catalyst amount

SCR reaction model

Cu-Zeolite reaction scheme

Туре	Reaction
NH ₃ adsorption	$\begin{array}{l} NH_3 + S1 \longrightarrow S1NH_3 \\ NH_3 + S2 \longrightarrow S2NH_3 \end{array}$
NH ₃ desorption	$S1NH_3 \rightarrow NH_3 + S1$ $S2NH_3 \rightarrow NH_3 + S2$
Standard SCR	$4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$
Fast SCR	$2NH_3 + NO + NO_2 \rightarrow 2N_2 + 3H_2O$
NO ₂ SCR	$\begin{array}{l} 8 NH_3 + 6 NO_2 \rightarrow 7 N_2 + 12 H_2 O \\ NH_3 + NO_2 \rightarrow \frac{1}{2} N_2 + \frac{1}{2} N_2 O + \frac{3}{2} H_2 O \end{array}$
NO to NO ₂ oxidation	$2NO + O_2 \rightarrow 2NO_2$
NO ₂ dissociation	$2NO_2 \rightarrow 2NO + O_2$
NH_3 oxidation towards N_2	$4\mathrm{NH}_3 + 3\mathrm{O}_2 \longrightarrow 2\mathrm{N}_2 + 6\mathrm{H}_2\mathrm{O}$
NH ₃ oxidation towards NO	$4NH3 + 5O2 \rightarrow 4NO + 6H2O$
NH ₃ oxidation towards N ₂ O	$NH_3 + O_2 \rightarrow \frac{1}{2} N_2O + \frac{3}{2} H_2O$

Reference: G. Koltsakis et al., Model-based optimization of advanced SCR substrates, International Journal of Automotive Engineering, Vol. 6 No. 2 (2015)

29-Apr-2015

Wall-flow reactor model

Key features

Transport-reaction coupling enabling modeling of soot/SCR interactions.

Intra-layer dimension for filtration and reaction modeling.

Internal diffusion effect on NOx conversion

7 Exothermia

Length [mm]

Internal diffusion effect on NOx conversion

7 Exothermia

29-Apr-2015

CLEERS 2015

Internal diffusion effect on NOx conversion

Effect of catalyst 'layering'

Effect of catalyst 'zoning'

29-Apr-2015

CLEERS 2015

Soot effect on NOx conversion

Exothermia

Soot has a negative effect on standard SCR acting as diffusion barrier

Ash effect on NOx conversion

Ash property	Value
Packing density	300 kg/m ³
Permeability	5e-14 m ²
Pore diameter	100 nm
Pore volume fraction	90 %

NOx=500ppm, NO₂/NOx=0, NH₃/NOx=1, T=250°C, GHSV=50,000 h⁻¹

29-Apr-2015

250

Ash effect on NOx conversion

Ash effect on NOx conversion

Ash property	Value
Packing density	300 kg/m ³
Permeability	5e-14 m ²
Pore diameter	100 nm
Pore volume fraction	90 %

29-Apr-2015

Ash effect on NOx conversion Impact of catalyst zoning

NOx=500ppm, NO₂/NOx=0, NH₃/NOx=1, T=250°C, GHSV=50,000 h⁻¹

Effect of NH₃/SCR on soot oxidation

TExothermia

Soot [g/l]

SCR effect on soot oxidation @ 350°C

7 Exothermia

Soot [g/l]

SCR effect on soot oxidation with ash @ 350°C

SCR and ash effect on soot balance point

7 Exothermia

T=350°C, Flow=1000kg/h, NO₂/NO_X=0.3, NO_X/soot=35 kg/kg

- Internal wall diffusion processes affect NOx conversion
- Soot and ash layers act as diffusion barriers, reducing catalyst efficiency.
- Catalyst zoning shows interesting behavior in case of accumulated plug-ash
- NO₂-driven soot oxidation at low temperatures is subject to competition with NO₂-SCR reactivity
- ✓ Diffusion barriers (e.g. ash layer) have a positive impact on passive soot oxidation under SCR-reacting conditions

Thank you very much for your attention!

