

Motivation

- hydrocarbons (HCs) during the engine cold start.
- emission control catalysts are lit off.
- hydrocarbons well above the light-off temperature.

Objectives

 $H_2O/CO_2/NO.$

Experimental

- Most studied materials in academic settings

Large/medium pores allow easy HC transport

Zeolite type	SiO ₂ /Al ₂ O ₃ molar ratio	Nominal cation form	Surface Area (m ² /g)
Beta	25	H+	680
Beta	25	Ag+	NM
Beta	300	H+	620
Beta	300	Ag+	NM
ZSM-5	30	H+	405
ZSM-5	30	Ag+	NM
ZSM-5	280	H+	400
79M_5	280	$\Delta \alpha^+$	

Moden, B., Donohue, J. M., Cormier, W. E., Li, H.-X. Top. Catal. 53, 1367 (2010)

Trap loading: 25 mg/Total flow rate: 300 sccm/SV: 360,000 h⁻¹

A Comparative Study of ZSM-5 and *B*-Zeolites for Hydrocarbon Trap Applications under "Cold-Start" Conditions Eleni A. Kyriakidou, Jae-Soon Choi, Mi-Young Kim, Todd J. Toops, and James E. Parks II

Oak Ridge National Laboratory (ORNL): Fuel, Engines and Emissions Research Center Email: <u>kyriakidoue@ornl.gov</u> (Eleni A. Kyriakidou), <u>choijs@ornl.gov</u> (Jae-Soon Choi), <u>toopstj@ornl.gov</u> (Todd J. Toops)

Funding from U.S. Department of Energy, Vehicle Technologies Office Program Managers: Gurpreet Singh, Ken Howden, Leo Breton

The silver exchanged ZSM-5 and β -zeolites - compared to H⁺ counterparts - exhibited an increased storage and desorption

The presence of NO over the Ag/ZSM-5 catalyst showed no impact on propylene adsorption.