# Impact of ZrO, Supports on the Durability and Low-Temperature Performance of Pd-based Diese Oxidation Catalysis CAK RIDGE



Mi-Young Kim<sup>1</sup>, Eleni A. Kyriakidou<sup>1</sup>, Jae-Soon Choi<sup>\*,1</sup>, Todd J. Toops<sup>1</sup>, Cyril Thomas<sup>2</sup>, Andrew Binder<sup>1</sup>, James E. Parks II<sup>1</sup>, Viviane Schwartz<sup>1</sup>, Jihua Chen<sup>1</sup> 1-Oak Ridge National Laboratory (ORNL): Fuel, Engines and Emissions Research Center; 2-UPMC Univ. Paris 06, UMP 7197, Laboratoire de Réactivité de Surface, Paris, France Email: <u>choijs@ornl.gov</u> (Jae-Soon Choi), <u>toopstj@ornl.gov</u> (Todd J. Toops)

- improvements in diesel engine efficiency.
- barriers exist for implementing these novel materials into practice.
- sulfur tolerance.
- metal due to its cost-competitiveness compared to Pt.

- $C_3H_6$  oxidation, sulfur tolerance, and hydrothermal stability.
- $NH_3^-$ ,  $CO_2^-$ , and  $NO_x^-$ TPD.



|              | 60 – 400 °C                            | 400 °C                       | 60 – 400 °C                            | TPR                |
|--------------|----------------------------------------|------------------------------|----------------------------------------|--------------------|
|              | 5 °C/min                               |                              | 5 °C/min                               | 400 <b>–600</b> °C |
|              |                                        | 50 ppm $SO_2$                |                                        | 5 °C/min           |
| 600 °C In Ar | Reactant:                              | 5% $H_2O$ in $\overline{Ar}$ | Reactant:                              | 10/4 50/           |
| tor 1 n      | 4000 ppm CO                            | $4\% O_2^{-}$                | 4000 ppm CO                            | $H \cap Ar$        |
|              | 500 ppm NO                             | _                            | 500 ppm NO                             | $\Pi_2 O, AI$      |
|              | 1000 ppm C <sub>3</sub> H <sub>6</sub> | 3 h                          | 1000 ppm C <sub>3</sub> H <sub>6</sub> |                    |
|              | 5% $H_2O$ in Ar                        |                              | $_{1}$ 5% H <sub>2</sub> O in Ar       |                    |
|              | 4% O <sub>2</sub> 40                   | 0 °C                         | $4\% O_2^{-}$ 40                       | 0°C                |
|              |                                        |                              |                                        |                    |
| <u> </u>     |                                        |                              |                                        |                    |
| бU °С····    |                                        | $00^{\circ}$                 |                                        |                    |

