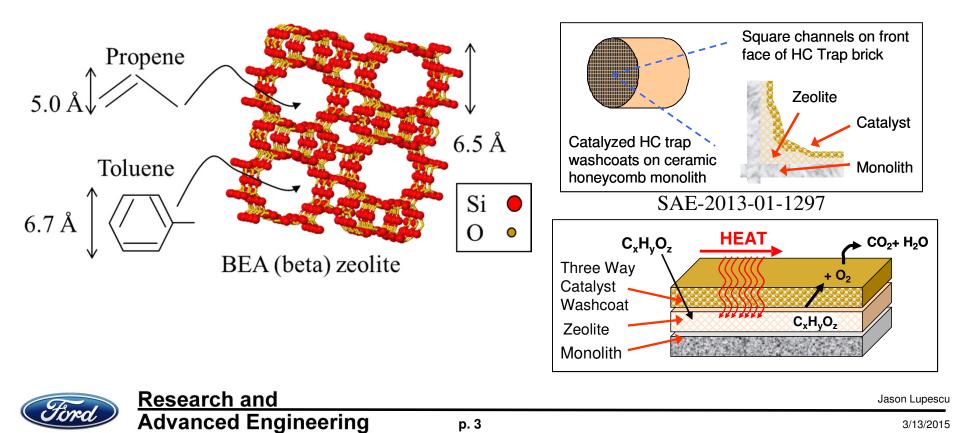
Overview of Automotive Zeolite HC Trap, Challenges for Gasoline Fuel and Current Research Areas

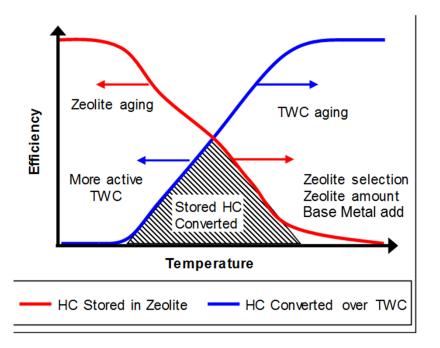
Jason Lupescu

Jason Lupescu


Regulations Impact on Vehicle Emissions

Emission challenges ahead		Possible Solutions		
1.	Annual decreases in fleet average tailpipe NMOG+NOx FTP75 emissions (PC/LDT1):	Vehicles that do not meet SULEV-30: Hydrocarbon (HC) Traps enable lower tailpipe NMOG emissions		
	-2015 = 0.100 g/mi	• Passive: adding zeolite to converter		
	-2025 = 0.030 g/mi	• Active: bypass trap plus exhaust valve		
2.	Uncertainty around increased national biofuel mandate :	Excess ethanol emissions can be effectively captured and treated by HC		
	-2015 = E10/E85	traps to make vehicle exhaust system efficient for any biofuel mandate		
	-2025 = E??/E85			
3.	Annual decreases in fleet average tailpipe particulate matter (PM) (PC/LDT1):	Gasoline direct injection vehicles that do not meet the PM standard with a filter could use port fuel injection with a HC		
	-2015 = 10 mg/mi	trap to meet NMOG and PM emissions		
	- 2021 = 3 mg/mi			
(H	 2028 = 1 mg/mi Research and Advanced Engineering 	Jason Lupescu		
	Advanced Engineering	p. 2 3/13/2015		

What is a Hydrocarbon (HC) Trap?


HC Trap = A catalytic converter with an adsorbent material (i.e., zeolite) that has a pore size on the same order as the molecules to be stored. The adsorbent material releases the stored HC molecules with increasing temperature to be burned over the hot oxidation catalyst.

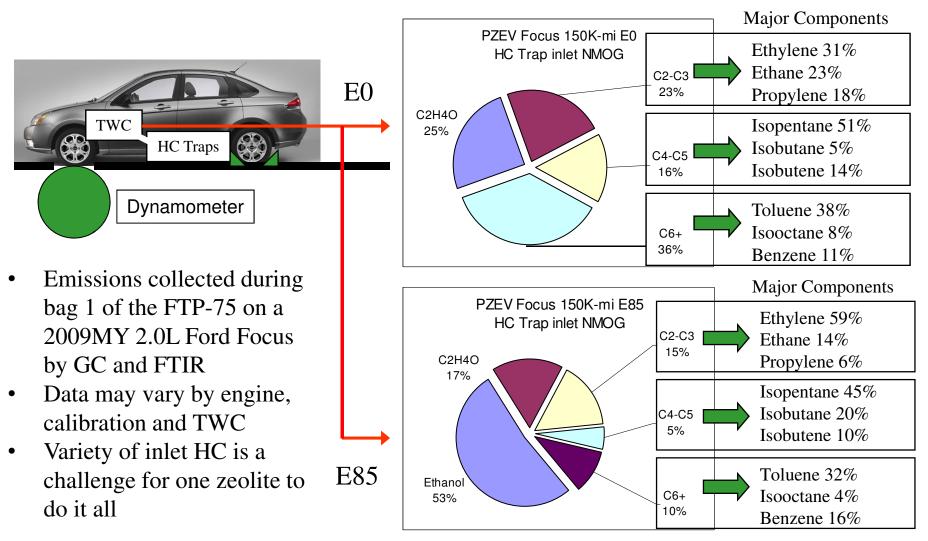
How Do HC Trap Attributes Affect Performance?

Goals: Minimize aging effects, improve performance, and lower PGM cost

HC Trap attributes:

- **1. Type of zeolite** (structure, pore size and acidity)
- 2. Increased **zeolite capacity** per unit volume
- 3. Improved **HC oxidation activity** by TWC layer
- **4. Base metal** addition for improved HC trapping and reaction

Jason Lupescu



Research and Advanced Engineering

Chemical Engineering

What NMOG Species Enter into UB Assembly?


Research and Advanced Engineering

Jason Lupescu

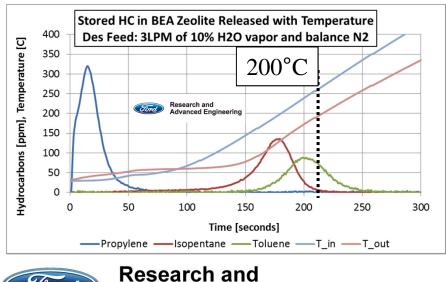
Common Zeolites & HC Kinetic Diameters (in Å)

Common Zeolites	IZA code	Pore diameter	Ring size	Pore structure
Y-type	FAU	7.4x7.4	12	3D
Beta	BEA	6.6x6.7	12	3D
		5.5x5.6	12	
Mordenite	MOR	6.5x7.0	12	1D
		3.4x4.8	8	
		2.6x5.7	8	
ZSM-5	MFI	5.3x5.6	10	3D
		5.1x5.5	10	
Ferrierite	FER	4.2x5.4	10	2D
		3.5x4.8	8	

Research and Advanced Engineering

Jason Lupescu

Challenges with Conventional Passive HC Traps


p. 7

HC species unlikely to be stored or converted effectively by HC traps

- Methane
- Alkanes (C-C): Isopentane, Isooctane
- C₂-C₃ Alkenes (C=C): Ethylene, Propylene
- Acetaldehyde

Why are these HCs a challenge?

1. Low release temperature

Advanced Engineering

Ford

2. High oxidation temperature

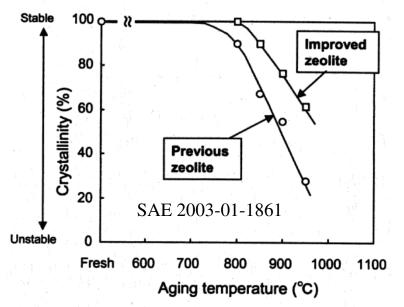
HC species traditionally stored

and converted well by HC traps

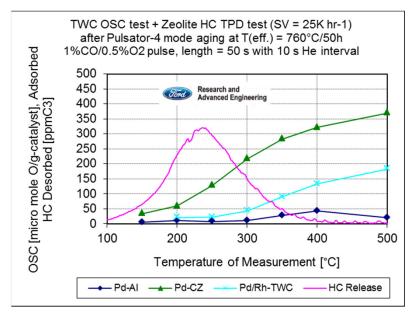
 C_{4+} Alkenes (C=C): Hexene

Ethanol

Temperatures (°C) required for 50% conversion of hydrocarbons when reacted individually (A), or together in the four hydrocarbon mixture (B), in the presence of carbon monoxide^a


Aromatics $\binom{c-c}{\sqrt{2}}$: Benzene, Toluene

	$1.5 wt\% Pt/Al_2O_3$	1.5wt%Pd/Al ₂ O ₃	1.0wt%Rh/Al ₂ O ₃	
A: Individu	al reactions wit	h CO present		
Hexene	308	260	201	
Toluene	309	264	201	
Benzene	301	254	218	
B: In four	hydrocarbon mi	xture with CO p	resent	
Hexene	312	260	201	
Toluene	326	279	202	
Benzene	327	284	249	
Isooctane	328	286	287	
Applied Ca	atalysis B: Envi	ronmental 26 (20	000) 47-57 Ja	ison Lupe



Challenges with Conventional Passive HC Traps

3. Low thermal durability \rightarrow Do not exceed 850°C!

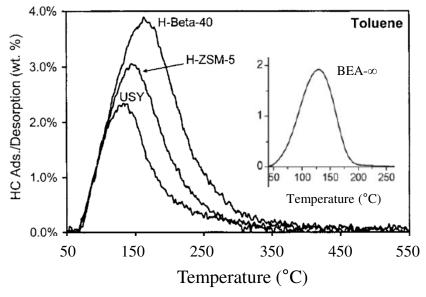
4. Poor alignment for desorbing HC and available oxygen storage capacity (OSC)

 Competitive adsorption with Water → Water is favorably stored in acidic zeolite and can displace weakly adsorbed HC species (ethylene and propylene).

Applied Catalysis B: Environmental 46 (2003) 97–104 Applied Catalysis A: General 382 (2010) 213–219

What Does Langmuir Adsorption Model Theory Predict for an Optimized HC Trap Design?

Mass balance of HC in zeolite:	
\blacktriangleright HC load rate = HC adsorption rate – HC desorption rate	$\frac{d\theta}{dt} = \left[k_{ads} \cdot c_{HC,wc} \cdot (1-\theta)\right] - \left\lfloor \frac{k_{ads}}{K_{EQ}} \cdot \theta \right\rfloor$
• We can improve overall HC trap function	Where:
by maximizing adsorption capacity and minimizing the desorption rate	k_{ads} and k_{des} are rate constants that contain heat of adsorption and
Maximize the equilibrium constant for adsorption, K_{EQ} (= k_{ads}/k_{des}), by adjusting the zeolite attributes	desorption as: $k_{i} = k_{0,i} \cdot \exp\left(\frac{-Ea_{i}}{R \cdot T}\right)$
 Minimize fractional loading, θ (= n/N), by increasing the number of adsorption sites (N) in the zeolite 	$c_{HC,wc}$ is the concentration of gas phase HC species in the washcoat
• We want a big trap that does not desorb HC readily	layer void space θ is the concentration of adsorbed
 Coking reactions are not covered by this model 	HC molecules (n) divided by the total number of adsorption sites (N)
Research and	Jason Lupes
Advanced Engineering p.9	nfidential 3/13/20


Confidential

HC Trap Research in Scientific Literature

Zeolite Type

Stored toluene desorption from zeolites (Stud. Surf. Sci. Catal. 158 (2005) 1375-1382) and pure silica BEA- ∞ (*Sep. Purif. Tech.* 54 (2007) 1-9)

Si/Al₂ ratio effects HC retention. Pure silica BEA-∞ is not effective for storing toluene compared to BEA-40

Ford

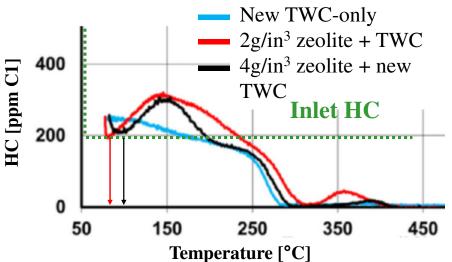
Research and Advanced Engineering

Zeolite Acidity

Treatment of E85 fuel emissions from a 2L Focus by changing the underbody converter from a TWC to HC traps (SAE-2013-01-1297)

Table 5. Unde	rbody Outlet	HC through	Bag 1 on E85
---------------	--------------	------------	--------------

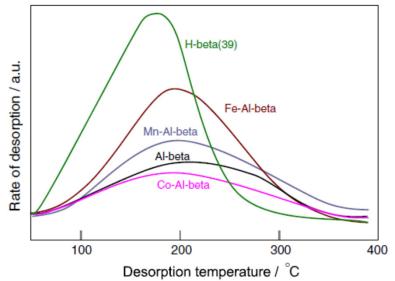
	UB	NMHC	Ethanol	HCHO	C ₂ H ₄ O	NMOG
	System	[mg/mi]	[mg/mi]	[mg/mi]	[mg/mi]	[mg/mi]
	C-only	35.7 +/-	46.1 +/-	2.8 +/-	10.5 +/-	95.0 +/-
	100g/ft ³	1.5	7.4	0.1	0.7	8.3
OEM Trap		33.8 +/-	21.9 +/-	1.4 +/-	11.1 +/-	68.3 +/-
300g/ft ³ +135g/ft ³		7.7	7.0	0.1	2.6	13.1
	ic Trap	24.7	7.8 +/-	13.4 +/-	15.3 +/-	61.2 +/-
	00g/ft ³	+/- 7.3	7.4	12.3	6.5	14.4


- OEM two-brick HC Trap was loaded at 300g/ft³ and 135g/ft³
- More acidic zeolite had lower tailpipe emissions of HC species an enabled a PGM reduction to 100g/ft³

HC Trap Research in Scientific Literature

Zeolite Loading + TWC

Mix of propylene, iso-pentane, and toluene fed at 1500 ppm C1 for 30 seconds, then reduced to 200 ppm C1 with temperature ramp (SAE 2014-01-1509)


- Increasing Zeolite load from 2g/in³ to 4g/in³ shifted HC release profile by 20°C to reduce unconverted HC
- New TWC lowered temperature needed to oxidize stored HC by 20°C

Ford

Research and Advanced Engineering

Base Metal Addition

Desorption of Toluene from Me-Beta-100 (*Catal. Lett.*, vol. 118, pgs. 72-78, 2007)

- Base metals decrease PGM demand on TWC to be active below 200°C
- Zeolite must have durable ion exchange site versus hydrothermal aging around 800°C

Conclusions

- Beta zeolite is capable at capturing all gasoline HC emissions, but retaining them above 200°C in a wet environment for possible oxidation is the challenge (it gets even worse after useful life aging!)
- Increasing of the zeolite acidity, loading and base metal content can increase the HC trap ability to hold stored HC to higher temperature
- Modification of the TWC washcoat composition for the underbody converter environment can lower the temperature required for HC oxidation and provide the required oxygen in an oxygen deficient environment

