Louise Olsson

A Multi-Site Kinetic Model for NH₃-SCR over Cu/SSZ-13

Louise Olsson^a, Kurnia Wijayanti^a, Kirsten Leistner^a, Ashok Kumar^b, Saurabh Y. Joshi^b, Krishna Kamasamudram^b, Neal W. Currier^b, Aleksey Yezerets^b

^aCompetence Center for Catalysis, Chemical Engineering, Chalmers University of Technology, Sweden ^bCummins Inc., Columbus, Indiana

Objective

The objective of this study was to develop a kinetic model for ammonia SCR over Cu/SSZ-13 in a broad temperature interval from 100 to 600°C.

Heat of adsorption of NH₃ on Cu-SSZ-13 using micro-calorimetry

- Total flow: 20 ml/min
- Catalyst mass: 100 mg
- Ammonia adsorption using 1000 ppm at each temperature
- 500, 450, 400, 350, 300, 250, 200, 150, 100, 50°C

Olsson et al., Appl. Catal. B: Environmental, 174 (2015) 212.

Chemical Engineering

Louise Olsson

- Heat of adsorption: 163.4*(1-0.596*θ_{NH3})

- Total flow: 3500 ml/min (30 300 h⁻¹)
- Monolith: 2 cm in length, 2.1 cm in diameter
- Ammonia adsorption using 400 ppm NH₃ +5 % H2O

Olsson et al., Appl. Catal. B: Environmental, 174 (2015) 212.

Reaction rates versus Cu loading, Cu/BEA

- Over-exchanged Cu sites are more active for ammonia and NO oxidation
- Low and medium loaded Cu-BEA are more active for SCR
- 2 different Cu sites

Mihai et al. J. of Catalysis, 311 (2014) 170.

Chemical Engineering

Ammonia TPD, for different Cu loading, Cu/BEA

Mihai et al., J. of Catal. 311 (2014) 170.

Louise Olsson

Site description

- S1: Copper in the six-membered rings. Lumped together with Brönsted acid sites.
 - Main NH₃ desorption peak
- S2: Copper in the larger cages. Lumped together with Brönsted acid sites.
 - High temperature shoulder in the NH₃ desorption peak
- S3: Sites for physisorption of ammonia
 - NH₃ desorption at low temperature.

Olsson et al., Appl. Catal. B: Environmental, 174 (2015) 212.

Chemical Engineering

Louise Olsson

Micro calorimetry and storage model

- S1: Heat of adsorption: 149.0*(1-0.20*θ_{NH3})
- S2: Heat of adsorption: 137.8 kJ/mol (from DSC 450°C)
- S3: Heat of adsorption: 72.6 kJ/mol (from DSC 50°C)

Olsson et al., Appl. Catal. B: Environmental, 174 (2015) 212.

Kinetic model of NH₃ TPD

Olsson et al., Appl. Catal. B: Environmental, 174 (2015) 212.

Chemical Engineering

Kinetic model of NH₃ TPD

Olsson et al., Appl. Catal. B: Environmental, 174 (2015) 212.

Chemical Engineering

Kinetic model of NH₃ TPD

Olsson et al., Appl. Catal. B: Environmental, 174 (2015) 212.

Chemical Engineering

Arrhenius plots

Olsson et al., Appl. Catal. B: Environmental, 174 (2015) 212.

Chemical Engineering

Olsson et al., Appl. Catal. B: Environmental, 174 (2015) 212.

Chemical Engineering

Ammonia SCR

Olsson et al., Appl. Catal. B: Environmental, 174 (2015) 212.

Chemical Engineering

Olsson et al., Appl. Catal. B: Environmental, 174 (2015) 212.

Chemical Engineering

Ammonia SCR

<u>400 ppm NO, 400ppm</u> <u>NH₃, 8% O₂, 5% H₂O</u>		
	$4 S1 - NH_3 + 4NO + O_2 \stackrel{\overline{r}_6}{\Rightarrow}$ $4N_2 + 6H_2O + 4S1$ $4 S2 - NH_3 + 4NO + O_2 \stackrel{\overline{r}_7}{\Rightarrow}$ $4N_2 + 6H_2O + 4S2$ $\overline{r_8}$	
	$S2 - NH_3 + NO \Leftrightarrow$ $S2 - NH_3 - NO$ $2 S2 - NH_3 - NO + O_2 \Rightarrow$	
	$N_2O + N_2 + 3H_2O + 2S2$ $2 S2 - NH_3 + 2NO + O_2 \stackrel{F_{10}}{\Rightarrow}$ $N_2O + N_2 + 3H_2O + 2S2$	

Olsson et al., Appl. Catal. B: Environmental, 174 (2015) 212.

Chemical Engineering

Conclusions

- A kinetic model for NH₃-SCR over Cu/SSZ-13 catalyst was developed. Three-sites were needed.
- Site description:
 - S1: Cu in the six-membered rings. Lumped together with Brönsted acid sites.
 - S2: Cu in the larger cages. Lumped together with Brönsted acid sites.
 - S3: Sites for physisorption of ammonia
- The main SCR reaction in the model occurs on S1 sites and the main ammonia oxidation reaction on S2 sites.
- An extra step was needed for ammonia-SCR on S2, to describe SCR at high temperature.

Acknowledgements

- This work was carried out at the Competence Centre for Catalysis, Chalmers University of Technology and at Cummins Inc.
- Cummins Inc. and Swedish Research Council is gratefully acknowledged for the financial support.

