Lean-Rich Cycling for Passive SCR Lean Gasoline Emission Control

Jim Parks, Todd Toops, Josh Pihl, Vitaly Prikhodko

Oak Ridge National Laboratory

CLEERS Workshop April 28, 2015 Dearborn, MI

ORNL is managed by UT-Battelle for the US Department of Energy

Acknowledgements

• Program Sponsors:

Gurpreet Singh, Ken Howden, and Leo Breton of the Advanced Combustion Engines Program in the Vehicle Technologies Office of the **U.S. Department of Energy**

Catalyst Supplier: Umicore

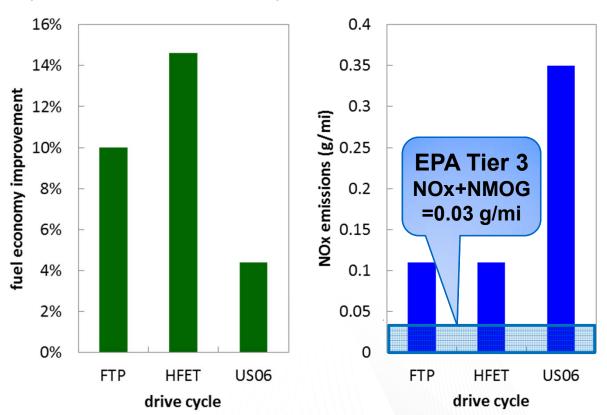
 Chris Owens, Tom Pauly, David Moser, Davion Clark, Ken Price, Corey Negohosian, Doug Ball

Technical Guidance: GM

 Wei Li, Kushal Narayanaswamy, Lucie Bednarova

U.S. DEPARTMENT OF

ENERGY


Lean operation of gasoline direct injection (GDI) engines improves efficiency, but creates emissions challenges

Case in Point: The European BMW 120i... a lean gasoline vehicle of marketable size that achieves 4-15% better fuel economy than common "stoich" gasoline vehicles, but... does <u>not meet U.S. Tier 2 Bin 5</u>

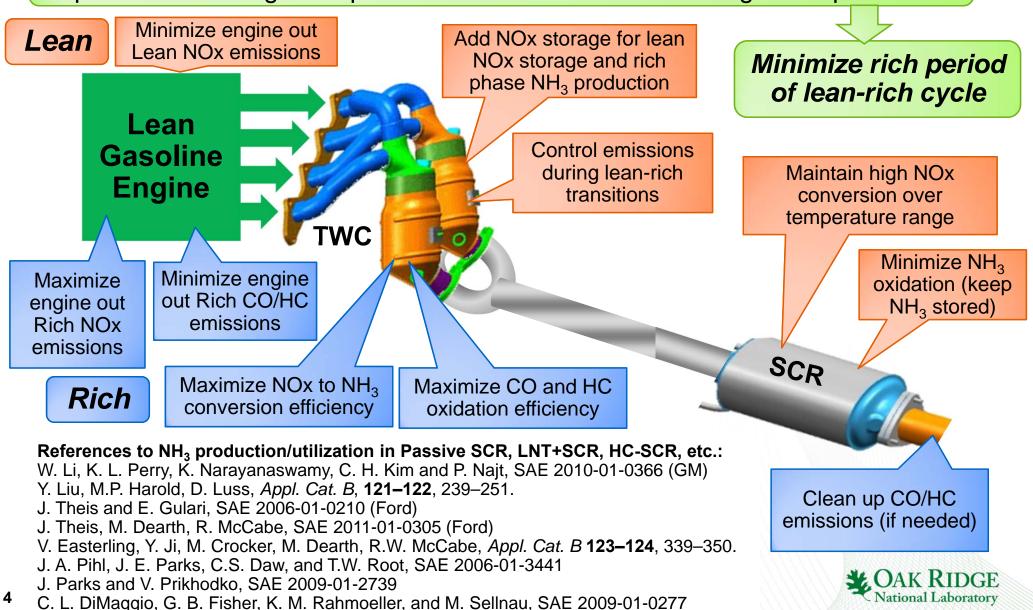
emission regulations (designed to meet Euro regulations).

Fuel economy improvement with lean operation (relative to stoichiometric)

NOx emissions problematic

(from lean operation)

JAK RIDGF

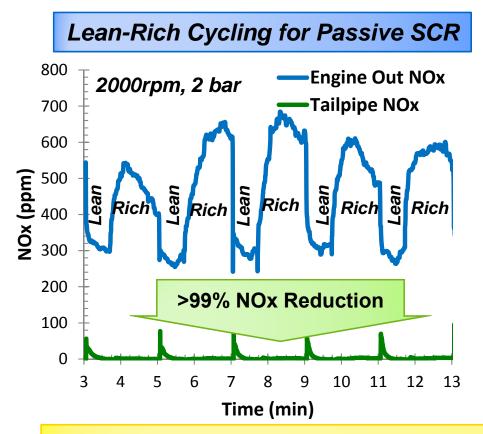

National Laboratory

NOTE: fuel economy and emissions measurements included effects from operation of lean NO_X trap (stock on BMW 120i vehicle)

Reference: SAE 2011-01-1218

Passive SCR and LNT+SCR options for lean GDI emission control produce NH₃ onboard


Key Principle: system fuel efficiency gain depends on optimizing NH₃ production during rich operation and NOx reduction during lean operation


High efficiency of NH₃ production over TWC observed with low HC slip and reductant to spare

λ=0.96

OAK RIDGE National Laboratory

Lean-rich cycling with NH₃ utilization-production gives high NOx reduction efficiency over SCR

Tailpipe	Avg (ppm)	Max (ppm)
NOx	5	126
NH ₃	2	5
N ₂ O	1	10
СО	1782	4658
NMOG	<1	16

+5.5% Fuel Economy (vs. Stoich)

With low tailpipe NOx emissions demonstrated, intent is to improve upon fuel efficiency gain reported at 2014 CLEERS Workshop (Prikhodko) by...

(1) optimizing TWC formulation for more NH₃ production
(2) utilizing more realistic engine load-step conditions

Catalysts studied on bench flow reactor

- Thanks to Umicore for supplying prototype catalysts (labelled ORNL-x)
- The Malibu catalyst is from an SULEV Chevrolet Malibu commercially available vehicle (represents existing state of the art)

sample ID	Description	Pt (g/l)	Pd (g/l)	Rh (g/l)	OSC	NSC
Malibu-1	Front half of TWC	0	7.3	0	Ν	Ν
Malibu-2	Rear half of TWC	0	1.1	0.3	Y	Ν
Malibu-combo	Full TWC	0	4.0	0.16	Υ	N
ORNL-1	Pt + Pd + Rh	2.47	4.17	0.05	Υ	Y
ORNL-2	Pd + Rh	0	6.36	0.14	N	N
ORNL-6	Pd	0	6.50	0	Ν	Ν
ORNL-5	Pd + OSC high	0	6.50	0	Н	Ν
ORNL-4	Pd + OSC med	0	4.06	0	Μ	N
ORNL-3	Pd + OSC low	0	1.41	0	L	Ν

OSC=oxygen storage capacity NSC=NOx storage capacity

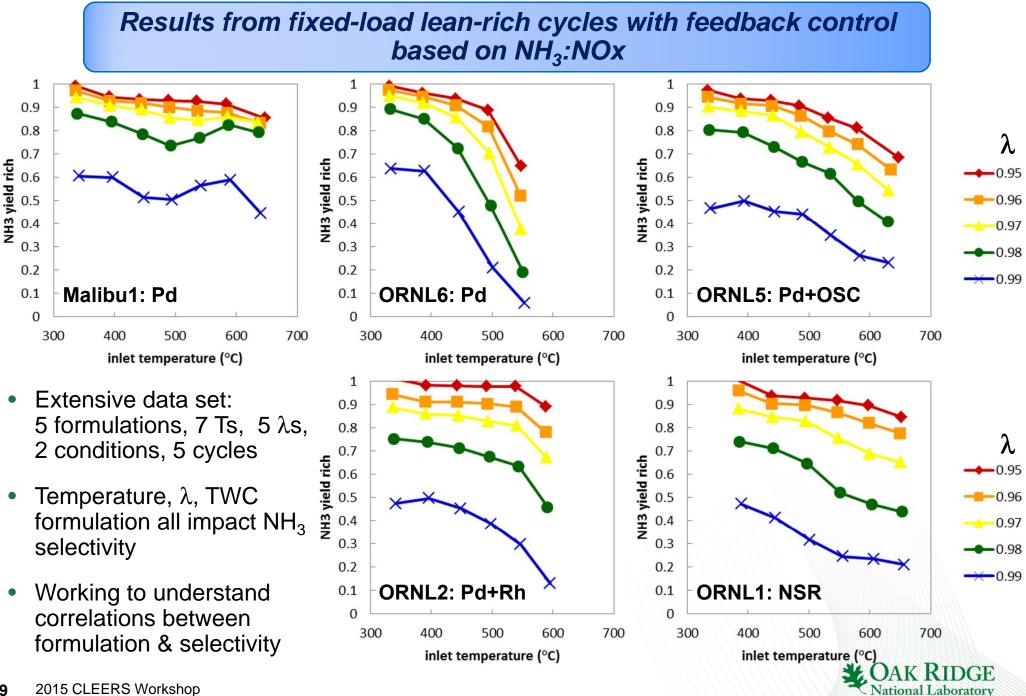
Conducted transient flow reactor experiments to estimate TWC effects on fuel consumption

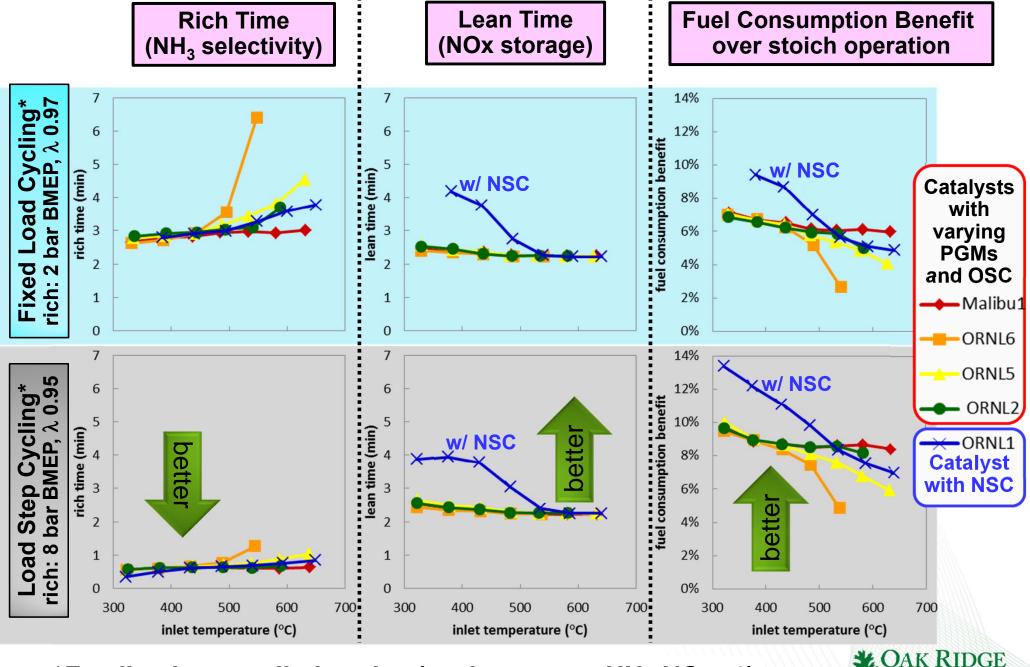
- Used feedback-controlled cycles on flow reactor to evaluate dynamic TWC response in context of passive SCR
- Evaluated two different simulated engine cycles (fixed load, load step)

load (BMEP)
SV (h ⁻¹)
NOx (ppm)
max lean time
simulates

fixed load		load step			
lean	rich	lean			
2 bar	8 bar	2 bar			
45000	60000	45000			
360	1200	360			
50%		80%			
cruise		"hill" transient			
	lean 2 bar 45000 360 %	lean rich 2 bar 8 bar 45000 60000 360 1200 % 80			

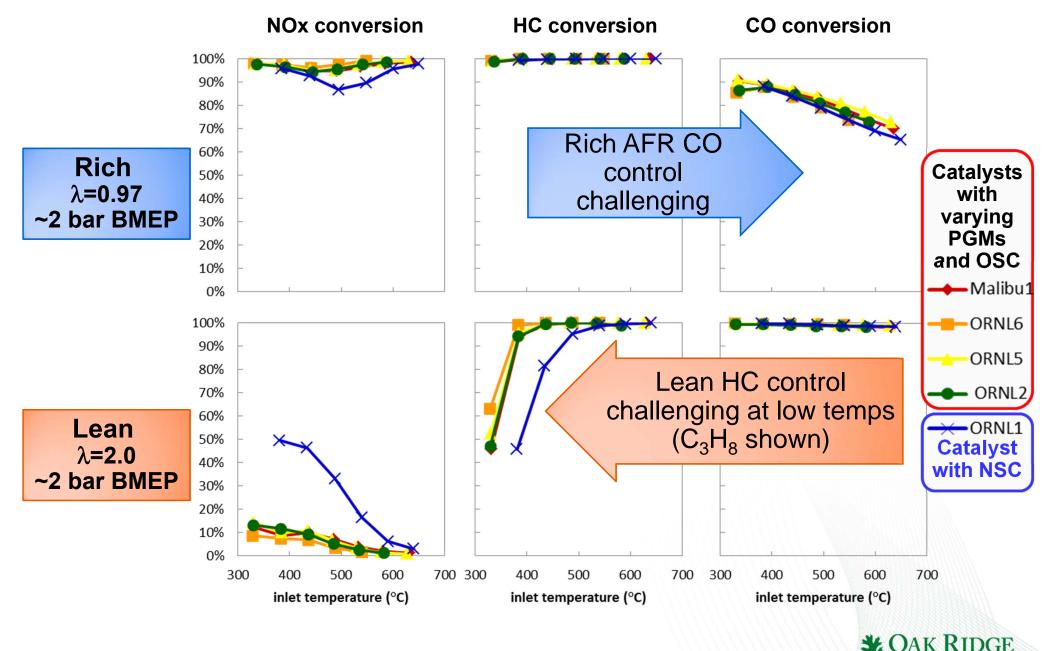
	Rich					Lean	
λ	0.95	0.96	0.97	0.98	0.99	1.00	2
O ₂ (%)	0.96	1.02	1.07	1.13	1.17	1.22	10
CO (%)	2.0	1.8	1.6	1.4	1.2	1.0	0.2
H ₂ (%)	1.0	0.9	0.8	0.7	0.6	0.5	0
NO (ppm)	600 (or 1200)				360		
C_3H_8 (ppm C_1)	3000				1900		
H ₂ O (%)	11				6.6		
CO ₂ (%)	11				6.6		
TWC SV (hr ⁻¹)	27000 (or 60000)				45000		


- Compositions & flows selected to mimic BMW GDI engine exhaust
- Space velocity changed with λ and load
- C₃H₈ chosen as challenging HC


OAK RIDGE

National Laboratory

TWC formulation affects NH₃ yield during rich operation, particularly at high temperatures


TWC formulation impacts fuel consumption through NH₃ selectivity (rich time) and NOx storage (lean time)

National Laboratory

¹⁰ *Feedback controlled cycles (cycle average NH₃:NOx=1)

TWC conversions highlight other emissions challenges for HCs (lean) and CO (rich)

National Laboratory

11

Summary

- Lean gasoline engines offer significant fuel economy benefits (vs. stoichiometric gasoline), but NOx emissions during lean operation problematic
- Passive SCR approach offer >99% NOx reduction efficiency with little HC slip (important for EPA Tier 3 compliance)
- Maximizing NH₃ formation during rich phase can enable greater fuel efficiency benefit for lean gasoline:
 - Bench reactor studies show adding NOx storage component to TWC can improve fuel efficiency gain to 7-14% during load step cycling experiments mainly through NOx storage during lean phase

Thanks for your attention! Jim Parks parksjeii@ornl.gov

