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Lean operation of gasoline direct injection (GDI) 
engines improves efficiency, but creates 
emissions challenges

Fuel economy improvement
with lean operation 

(relative to stoichiometric)

NOx emissions problematic 
(from lean operation)

EPA Tier 3 
NOx+NMOG
=0.03 g/mi

NOTE: fuel economy and emissions measurements 
included effects from operation of lean NOX trap 

(stock on BMW 120i vehicle)

Case in Point:
The European BMW 120i…
a lean gasoline vehicle of 
marketable size that achieves 
4-15% better fuel economy 
than common “stoich” gasoline 
vehicles, but…
does not meet U.S. Tier 2 Bin 5 
emission regulations (designed 
to meet Euro regulations).

Reference: SAE 2011-01-1218
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Passive SCR and LNT+SCR options for lean 
GDI emission control produce NH3 onboard 

TWC

Lean
Gasoline
Engine

Key Principle: system fuel efficiency gain depends on optimizing NH3
production during rich operation and NOx reduction during lean operation

Minimize rich period 
of lean-rich cycle

Minimize engine out 
Lean NOx emissions

3

Add NOx storage for lean 
NOx storage and rich 
phase NH3 production

3

Minimize NH3
oxidation (keep 

NH3 stored)

Maintain high NOx 
conversion over 

temperature range

Control emissions 
during lean-rich 

transitions

Lean

Maximize 
engine out 
Rich NOx 
emissions

Minimize engine 
out Rich CO/HC 

emissions

Maximize NOx to NH3
conversion efficiency

Maximize CO and HC 
oxidation efficiency

Clean up CO/HC 
emissions (if needed)

Rich
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High efficiency of NH3 production over TWC 
observed with low HC slip and reductant to spare
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2NO + 5H2 → 2NH3+ 2H2O

λ=0.96

λ=0.96 nominally gives 
high NH3 formation 

with low HC slip
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Lean-rich cycling with NH3 utilization-production 
gives high NOx reduction efficiency over SCR
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Lean-Rich Cycling for Passive SCR
Tailpipe Avg (ppm) Max (ppm)

NOx 5 126
NH3 2 5
N2O 1 10
CO 1782 4658

NMOG <1 16

+5.5% 
Fuel Economy (vs. Stoich)

With low tailpipe NOx emissions demonstrated, intent is to 
improve upon fuel efficiency gain reported at 2014 CLEERS 

Workshop (Prikhodko) by…
(1) optimizing TWC formulation for more NH3 production

(2) utilizing more realistic engine load-step conditions 
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Catalysts studied on bench flow reactor
• Thanks to Umicore for supplying prototype catalysts (labelled ORNL-x)

• The Malibu catalyst is from an SULEV Chevrolet Malibu commercially 
available vehicle (represents existing state of the art)

OSC=oxygen storage capacity
NSC=NOx storage capacity

sample ID Description Pt (g/l) Pd (g/l) Rh (g/l) OSC NSC

Malibu-1 Front half of TWC 0 7.3 0 N N

Malibu-2 Rear half of TWC 0 1.1 0.3 Y N

Malibu-combo Full TWC 0 4.0 0.16 Y N

ORNL-1 Pt + Pd + Rh 2.47 4.17 0.05 Y Y

ORNL-2 Pd + Rh 0 6.36 0.14 N N

ORNL-6 Pd 0 6.50 0 N N

ORNL-5 Pd + OSC high 0 6.50 0 H N

ORNL-4 Pd + OSC med 0 4.06 0 M N

ORNL-3 Pd + OSC low 0 1.41 0 L N
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Conducted transient flow reactor experiments to 
estimate TWC effects on fuel consumption
• Used feedback-controlled 

cycles on flow reactor to 
evaluate dynamic TWC 
response in context of 
passive SCR

• Evaluated two different 
simulated engine cycles 
(fixed load, load step)

fixed load load step
rich lean rich lean

load (BMEP) 2 bar 2 bar 8 bar 2 bar

SV (h-1) 27000 45000 60000 45000

NOx (ppm) 600 360 1200 360

max lean time 50% 80%
simulates cruise “hill” transient

Rich Lean
λ 0.95 0.96 0.97 0.98 0.99 1.00 2

O2 (%) 0.96 1.02 1.07 1.13 1.17 1.22 10

CO (%) 2.0 1.8 1.6 1.4 1.2 1.0 0.2

H2 (%) 1.0 0.9 0.8 0.7 0.6 0.5 0

NO (ppm) 600 (or 1200) 360

C3H8 (ppm C1) 3000 1900

H2O (%) 11 6.6

CO2 (%) 11 6.6

TWC SV (hr-1) 27000 (or 60000) 45000

• Compositions & 
flows selected to 
mimic BMW GDI 
engine exhaust

• Space velocity 
changed with λ
and load

• C3H8 chosen as 
challenging HC
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TWC formulation affects NH3 yield during rich operation, 
particularly at high temperatures

• Extensive data set: 
5 formulations, 7 Ts,  5 λs,  
2 conditions, 5 cycles

• Temperature, λ, TWC 
formulation all impact NH3
selectivity 

• Working to understand 
correlations between 
formulation & selectivity

Malibu1: Pd ORNL6: Pd ORNL5: Pd+OSC

ORNL2: Pd+Rh ORNL1: NSR

λ

λ

Results from fixed-load lean-rich cycles with feedback control 
based on NH3:NOx
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TWC formulation impacts fuel consumption through NH3
selectivity (rich time) and NOx storage (lean time)

Rich Time
(NH3 selectivity)

Lean Time
(NOx storage)

Fuel Consumption Benefit 
over stoich operation
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TWC conversions highlight other emissions 
challenges for HCs (lean) and CO (rich)

Rich 
λ=0.97

~2 bar BMEP

Lean 
λ=2.0

~2 bar BMEP

NOx conversion HC conversion CO conversion

Rich AFR CO 
control 

challenging

Lean HC control 
challenging at low temps 

(C3H8 shown)

Catalysts 
with 

varying 
PGMs 

and OSC

Catalyst 
with NSC



12 2015 CLEERS Workshop

Summary
• Lean gasoline engines offer significant fuel economy 

benefits (vs. stoichiometric gasoline), but NOx emissions 
during lean operation problematic

• Passive SCR approach offer >99% NOx reduction efficiency 
with little HC slip (important for EPA Tier 3 compliance)

• Maximizing NH3 formation during rich phase can enable 
greater fuel efficiency benefit for lean gasoline:
– Bench reactor studies show adding NOx storage component to TWC 

can improve fuel efficiency gain to 7-14% during load step cycling 
experiments mainly through NOx storage during lean phase

Thanks for your attention!
Jim Parks

parksjeii@ornl.gov


