Field-Ageing Impacts on a Commercial Automotive Cu/SAPO-34 SCR Catalyst: Focusing on NH₃ Capacity Utilization

W.P. Partridge (PI), M.-Y. Kim, J.A. Pihl, C.S. Daw, J.-S. Choi Oak Ridge National Laboratory

N. Currier (PI), A. Yezerets, K. Kamasamudram, S. Joshi Cummins Inc.

> Presenter: Bill Partridge partridgewp@ornl.gov

2015 CLEERS Workshop April 28th, 2015, Dearborn, Michigan

U.S. DOE Program Management Team: Gurpreet Singh, Ken Howden, Leo Breton

Objective, Approach & Applications

Objective

 Understand how Field Ageing impacts the performance of a commercial Cu/SAPO-34 NH₃ SCR Catalyst

Approach

- Use sample with real-world on-road exposure
 - Acquired from field with normal ageing profile
 - Sample should be generally representative of field-aged catalysts
- Assess aged sample vs. degreened
- Focus on spatially resolved intra-catalyst impact distributions
- Compare impacts on different catalyst functions
 - SCR, NH₃ capacity & oxidation reactions, inhibition limit

Applications

- Apply data to improve and critically assess catalyst models
- Identify strategies for catalyst-state assessment

Experimental: Catalyst, Conditions, Methods & Approach

	Commercial	State	Conditions
Catalyst	2010 CMI, Cu/SAPO-34	DeGreened	d 700°C, 4hrs, 10%O ₂ + 5%H ₂ O; • From front of sample B11-22
Mini-Core size	21 cells; ca. 2.45-cm long x 0.78 wide	(DeG)	
Channel density	300 cpsi	Hydrothermal	800°C, 50hrs,
Space Velocity	60,000 hr ⁻¹	Ageing	14%O ₂ + 8%H ₂ O; • CMI ageing rig: 10-9-2013 • From front of sample B11-23
NH ₃ , NO _x	200ppm, 200ppm		
Base O ₂ & H ₂ O	10% & 5%		Prepared by CMI; • CMI date: 7-1-2014 • Normal ageing profile • From front of larger sample; • Pretreatment at ORNL: • 500°C to remove HC & S • Cycling at 200, 300 & 400C to steady state
Temperatures	200, 300 & 400°C		
Standard SCR	\checkmark focus of these slides	Field Ageing (FA)	
Fast SCR	\checkmark		
Diagnostic	SpaciMS & FTIR		

Cummins 4-Step Protocol Resolves Reaction Parameters

• Step1: NO oxidation

- Step2: SS NO_x & NH₃ conversions, Parasitic NH₃ oxidation, Dynamic NH₃ capacity
- Step3: NO_x-free NH₃ oxidation, Unused NH₃ capacity
- Step4: NO oxidation, Total NH₃ capacity for the Department of Energy

Total = Dynamic + Unused

National Laboratory

Field Ageing Significantly Reduces SCR Conversion

- Major SCR degradation with FA
 - Greatest in front 0-0.5L region:
 - ~40-55% lower conversion at 300°C
 - ~20-40% lower conversion at 400°C

- Parasitic NH₃ Oxidation: PO
 - negligible at 300°C
 - apparent at 400°C for both DG & FA

Does Field Ageing have similar impact on other catalyst functions?

Use FA impact correlations to infer contribution to significant SCR loss.

Field Ageing Reduces both Parasitic & NH₃ Oxidation

	Parasitic NH ₃ Oxidation (PO: during SCR)	NH₃ Oxidation (in absence of NO _x)	
FA vs. DeG	~20% lower	~20% lower	
HTA vs. DeG	same	~100% greater	

- Reduced competition should cause greater SCR conversion if PO limits SCR
- HTA impacts PO & NH₃ Oxy differ
 - PO & NH₃ Oxy are different reactions
 - Common FA results are unusual

- FA & HTA have different impacts – Impacting different functions differently
- FA SCR loss >> PO loss
 - Significant PO change would cause opposite SCR trend
- FA reduces both SCR & PO
 - FA apparently impacts a common site
 - SCR is more sensitive to this impact
 - PO site competition not limiting SCR

Field Ageing Changes TC & UC, but Little DC Impact

Total NH₃ Capacity: TC

- FA ~25% lower at both 300 & 400°C
- Similar loss with HTA

• Dynamic NH₃ Capacity: DC

- DC≈TC at catalyst front
- FA causes DC≈TC deeper into catalyst
 - DC saturated deeper into catalyst
 - Overall very small DC change
 - [NH₃] similar at DC-TC separation point
 - Suggests similar Adsorption Isotherm

Total NH_3 Capacity: **TC** Dynamic NH_3 Capacity: **DC**

DC: fraction used during SCR

Unused NH₃ Capacity: UC

 $\mathsf{DC} + \mathsf{UC} = \mathsf{TC}$

- Unused NH₃ Capacity: UC
 - FA lowers UC (Due to TC & DC behavior)
 - May impact dosing control
 - Candidate for catalyst-state monitor
- Same general behavior at 400°C
- FA has little impact on DC quantity
- FA SCR loss >> DC change
 - Apparently not due to DC quantity loss
 - But, is Field Aged DC less accessible?

Field Ageing Does Not Change Dynamic NH₃ Inhibition

- Dynamic inhibition at SCR start
 - Observed in catalyst front for all samples
 - Observed above consistent [NH₃] limit
 - \gtrsim 165ppm [NH₃] at 300°C
 - \gtrsim 125ppm [NH₃] at 400°C
 - 400°C more sensitive
 - Due to faster reaction or less accessible DC?
 - More sensitive to spillover from Higher-E S2 sites, which are more dominant at high-T
 - Impacts NO & NH₃ adsorption parameters

Tronconi, Cat.Today 105, p529; describes dynamic inhibition

- 'modified redox (MR) SCR rate law'
- Depends on T, C_{NO} , θ_{NH3} & C_{O2}

$$r_{\rm NO} = \frac{k_{\rm NO}^{\prime} \operatorname{exp}\left(-\frac{E_{\rm NO}}{RT}\right) C_{\rm NO} \theta_{\rm NH_3}}{1 + K_{\rm NH_3}^{\prime} \frac{\theta_{\rm NH_3}}{1 - \theta_{\rm NH_3}}} \left(\frac{p_{\rm O_2}}{0.02}\right)^{\beta}$$
(12)

- r_{NO}: rate of DeNOx reaction
- E_{NO}: Activation energy for DeNOx reaction
- C_{NO}: gas phase concentration of NO
- θ_{NH3} : surface coverage of NH_3
- k_{NO}: pre-exponential factor for DeNOx reaction rate constant
- K_{NH3}: NH₃ rate parameter
- p_{O2}: O₂ partial pressure
- S1: redox site for O₂ & NO adsorption/activation
- S2: acidic site for NH₃ adsorption

Suggests inhibiting NH₃ & NO interactions not impacted by FA

- Abundance of S2 vs S1 sites
 - i.e., NH₃ spillover from S2 to S1 is equivalent in DG & FA; even with lower FA TC
 - Consistent with lower NH₃ vs. NO capacity
 - Consistent with separate S1 & S2 sites
 - Can lose many S2 sites before change in NO-adsorption inhibition occurs
 - FA selectively impacts S2 sites over S1?

Adsorption Isotherm has Characteristics of 2-Site Langmuir

1000

800

600

NH₃ concentration (ppm)

0

0.02

0.04

NH₃ inventory (mol/l)

0.08

0.1

- NH₃ Isotherm from SpaciMS data
 - Under SCR reaction conditions
 - Isotherm has extra loss term: reaction
 - Normalized coverage shown
 - DC / (DC + UC)
 - Adsorption is faster than even Fast SCR
 - Implied by DC-TC separation at a common [NH₃] for Standard & Fast SCR (previously shown)
 - Can interpret isotherm classically
- 2.0E-0 Shape is like 2-site Langmuir
 - See Pihl & Daw CLEERS data
 - From commercial SSZ-13 SCR
 - Model fit with uniform partitioning between the ca. 80 & 30kJ/mol sites
 - Distinct knee at low NH₃ partial pressure
 - Isotherm flattens at higher temperature
 Typical nature for Langmuir isotherm

Field Ageing Does Not Change NH₃ Adsorption Energetics

- Isotherm is same at a give temperature
 - -400°C data overlay despite fit
 - 400°C DG 1.3E-4atm point looks low
 - Shape would change with energetics
 - e.g., if selective adsorption site ageing

- Simplifies modeling of aged samples
 - Field ageing reduces number of sites
 - But adsorption occurs in same way
 - Use same model with scaling factor

Summary of Field-Ageing Impacts on SCR Functions

Function	Field-Ageing Impact vs. DeGreened		
	300°C	400°C	
SCR	40-55% lower	20-40% lower	
Parasitic NH ₃ Oxidation	NA; same	20% lower (opposite trend)	
NH ₃ Oxidation	NA; same	20% lower	
NH ₃ Inhibition limit	same	same	
Fotal NH ₃ Capacity	25% lower	25% lower	
Dynamic NH ₃ Capacity	ca. same	ca. same	
Inused NH ₃ Capacity	lower	lower	
NH ₃ Adsorption Energetics	same	same	

- Results generally consistent with
 - FA & HTA have different impacts
 - PO competition not limiting FA SCR
 - FA impacts common site related to SCR & PO
 - Common site more active for SCR than PO
 - FA reduces TC
 - DC quantity not limiting FA SCR
 - FA may make DC less accessible, causing longer\slower SCR
 - Practically nonselective FA impact on NH_3 adsorption-site energetics

Multiple Sites with Varying Functional Selectivity

- Olsson's group has discussed how a range of exchanged Cu-BEA sites exist
 - with a corresponding range of selectivity to different functions
 - Selective ageing could cause the SCR & oxidation results observed here Supriyanto, Olsson, et al. (2015). Applied Catalysis B, V163, 382-392

Site	NO & NH ₃ Oxidation	SCR	Losing these sites	
Low-exchanged Cu-BEA	Low	High	would selectively	
Medium-exchanged Cu-BEA	Low	High	degrade SCR vs. oxidation	
Over-exchanged Cu-BEA	High	Low	**	

The FA impact is likely similar for the Cu/SAPO-34 catalyst studied here

- Different sites with functions, selectivity and sensitivity to ageing
- FA degrades site(s) with higher SCR activity & lower oxidation activity
 - Large impact on SCR (selective loss of high-efficiency SCR sites)
 - Small impact on PO (PO competition not limiting SCR)
- FA does not significantly impact major NH₃-adsorption 'reservoir' energetics
 - Reduces Total Capacity
 - Capacity loss is not selective (adsorption energetics \ isotherm remain the same)
 - Dynamic Capacity practically unchanged (may be less accessible to remaining SCR sites)

Next Steps

- Additional catalyst characterization needed
 - Cu sintering
 - Poisoning; e.g., by lube components (S, Zn, P, Ca)
 - Number & nature of surface sites
 - Zeolite structure & dopant changes
- Comparison to Cummins catalyst models is ongoing

Acknowledgements

- U.S. DOE Office of Vehicle Technologies (Gurpreet Singh, Ken Howden, Leo Breton)
- Cummins Inc.
- ORNL Fuels, Engines & Emissions Research Center

