

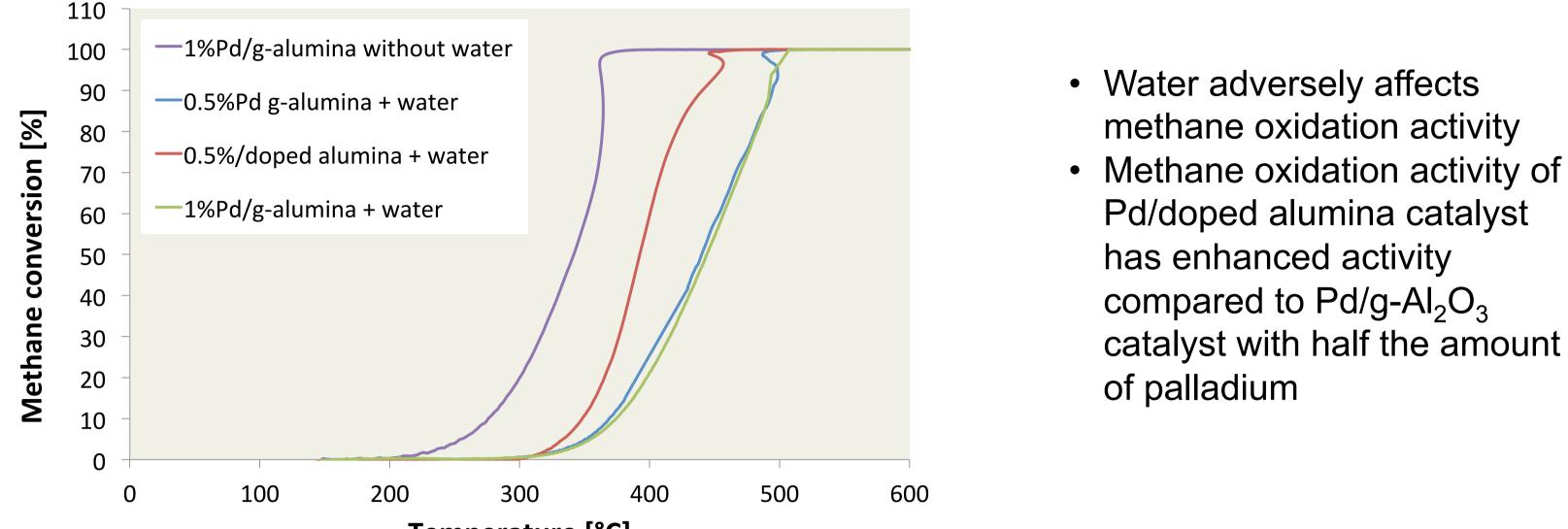
Natural Resources Ressources naturelles Canada

CanmetENERGY Enhanced Pd catalyst for abatement of methane

Leadership in ecoInnovation

emissions from natural gas vehicles

Gianni Caravaggio, Lioudmila Nossova, Raymond Burich and Nicola Maffei


Natural Resources Canada, CanmetENERGY, Ottawa, ON, Canada

Introduction

- Natural gas (NG) has received increased interest in the transportation sector as a low carbon fuel (abundant and inexpensive).
- Lean burn natural gas engines are similar in performance to diesel engines.
- Natural gas engines provide a cleaner option, with estimated 15-20% lower greenhouse gas (GHG) emissions [1], than gasoline and diesel engines but have methane (CH_{4}) slip emissions.

Results (Cont.)

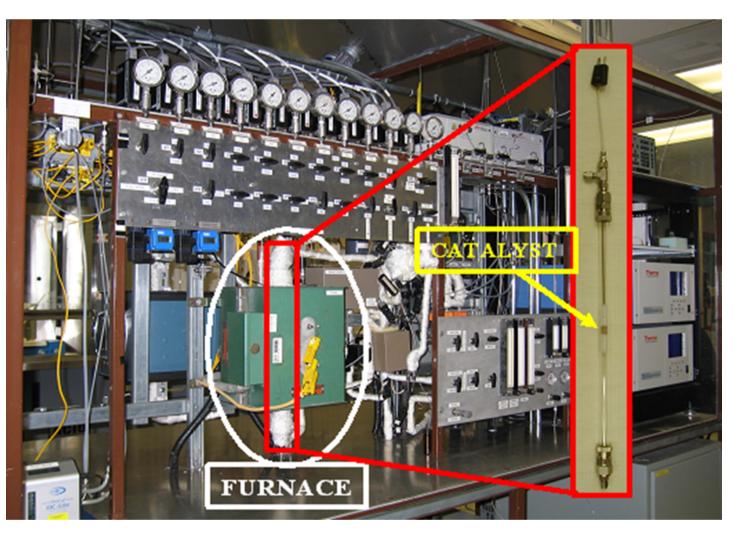
Methane oxidation activity evaluation in presence of water (CTU)

- Water adversely affects methane oxidation activity
- Methane oxidation activity of Pd/doped alumina catalyst

- It is projected in the next 10 years CH_4 emissions will surpass those of CO_2 [2]. \bullet
- CH_4 has a global warming potential 21 times greater than CO_2 .

Canada

- Reduced CH_4 emissions can be achieved by using catalytic converters [3]. \bullet
- The best known methane oxidation catalysts contain Pd which is highly active for the low temperature oxidation of methane but is a relatively expensive noble metal.
- **Objective:** Develop a methane oxidation catalyst active in the range of NG lean burn engine exhaust temperature (300-480°C), with a reduced amount of noble metal.


Catalyst Synthesis, Characterization and Testing

Pd supported catalysts were synthesized by incipient wetness impregnation (IWI) on alumina supports: An aqueous solution of metal nitrates was prepared, then added to supports in the quantity required to fill the pore volume.


Catalyst Characterization

- Surface area: BET Micromeritics ASAP 2010 analyzer
- Composition: SEM/EDX, Hitachi S3400N VP-SEM with an Oxford INCA EDX detector system operating at 20 kV and 80-90 mA
- Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS)
 - \succ Pretreatment for 1hr @ 400°C with N₂ flow 50 mL/min and 30 min @ 350°C under a N₂ flow of 50 mL/min
 - \succ Flow of 50 mL/min of 1% CH₄ and 10% O₂ balance of He

Catalyst Activity

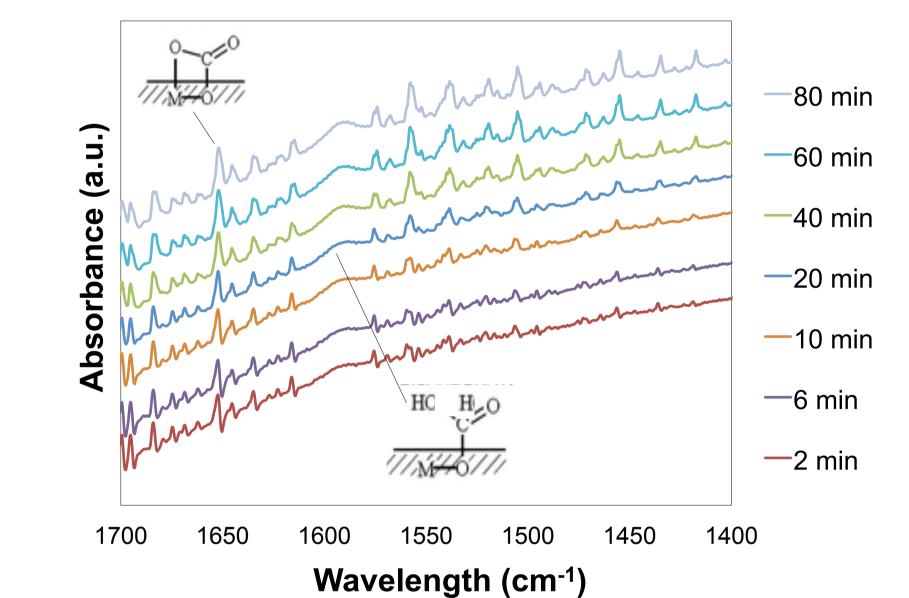
Temperature [°C] DRIFTS Analysis: comparison of $0.5Pd/g-Al_2O_3$ and 0.5Pd/doped alumina

DRIFTS spectra of 0.5%Pd/g-Al₂O₃@350°C

Temperature Programmed Oxidation (TPO)

- Micromeritics Autochem II 2920 with TCD
- Temperature ramp: 50-600°C at 10°C/min.
- Sample size: 50 mg
- \succ Feed gas: 1% CH₄, 10% O₂, balance He.
- Flow: 50 mL/min

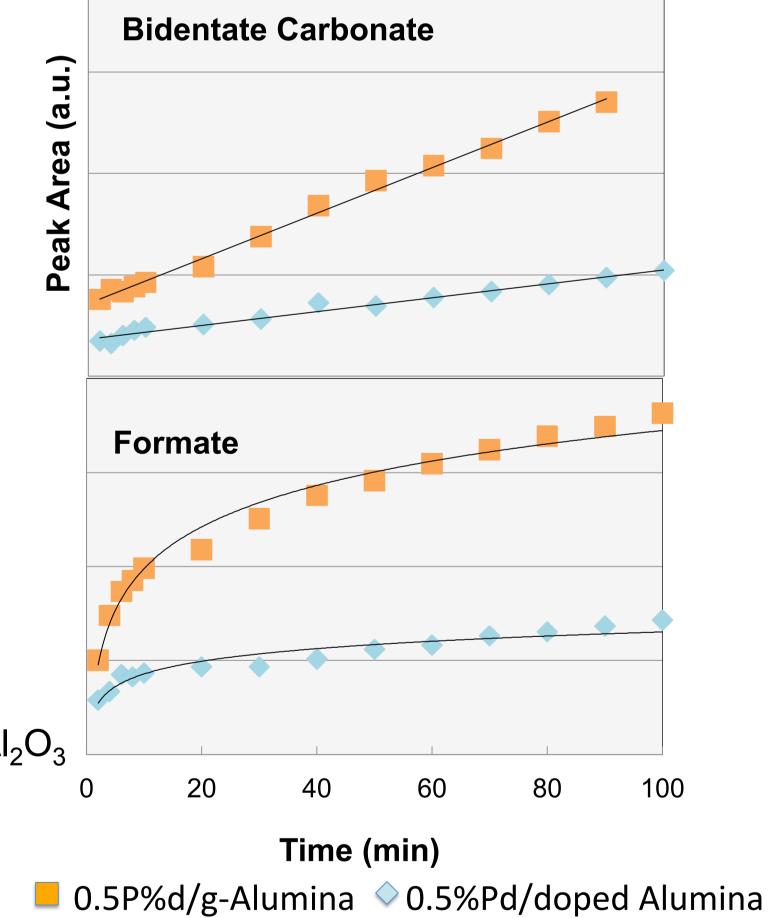
Catalyst testing unit (CTU) (test with water)


- In house testing unit with FT-IR Detector
- Temperature ramp: 150-600°C at 3°C/min.
- Sample size: 500 mg
- \succ Feed gas: 1% CH₄, 10% O₂, 6% CO₂, 10% H₂O, balance N_2 , Flow: 500 mL/min, ~55K (GHSV)

Catalyst testing unit (CTU)

Results

Characterization and activity (by TPO) of Pd catalysts on various supports


Name (composition)	Active metal content Nominal/SEM EDX (wt%)			Surface area	T ₅₀ ¹ (°C)
	Pd	Zr	Ti	(m²/g)	
$0.5Pd/g-Al_2O_3^2$	0.50/0.52	-	-	275	374
$1Pd/g-Al_2O_3^2$	1.0/1.1	-	_	240	354
0.5Pd/doped alumina ³	0.50/0.52	_	-	149	357
0.5Pd/1Zr/doped alumina ³	0.50/0.47	1.0/1.0	-	145	348
0.5Pd/1Ti/doped alumina ³	0.50/0.57	-	1.0/0.67	146	375
0.5Pd/1Zr/g-Al ₂ O ₃	0.50/0.47	1.0/1.0	-	246	361
0.5Pd/1Ti/g-Al ₂ O ₃	0.50/0.58	-	1.0/0.73	230	407
0.5Pd/Silica ⁴	0.50/0.56	-	-	199	376
0.5Pd/1Zr/Silica ⁴	0.50/0.53	1.0/0.52	-	194	371
0.5Pd/1Ti/Silica ⁴	0.50/0.59	_	1.0/0.64	204	370

- Formate and bidentate carbonate peak area increased with time
- Oxidation is more rapid on doped alumina than $g-Al_2O_3$
- Dopant may cause structural defects which:
 - Supply a larger amount of lattice oxygen
 - Allow for a faster oxidation of surface species
 - Liberate active sites

Conclusions

- Pd on commercially available doped alumina is the most active catalyst
- DRIFTS identified differences in intermediate surface species emergence
- Dopant in support may provide more lattice oxygen oxidizing surface species and liberating active sites

¹ Temperature at 50% methane conversion 2 g-Al₂O₃ prepared in –house ² Commercial support **Commercial silica**

- Surface area is not necessarily an indicator of catalytic performance Composition has a greater effect on catalytic activity
- Pd supported on commercial doped alumina exhibits highest activity

canmetenergy.nrcan.gc.ca

Future Work

- Aging studies in the presence of water to determine hydrothermal stability
- Test catalyst in presence of sulphur to establish sulphur resistance

Acknowledgements and References

Funding for this project was provided by the Government of Canada Program on Energy Research and Development (PERD), AFTER1 Project.

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2015.

References:

[1] "Study of Opportunities for Natural Gas in the Transportation Sector"; Marbek: Ottawa, ON, March 2010. [2] Johnson, J. Chemical & Engineering News, 92:27:10-15, 2014. [3] DOE Report, http://www.afdc.energy.gov/vehicle

Canaca*