

Model Identification and Optimization-based Control Design for Four-Way Catalyst System

Irfan Kil¹, Samarth Vats², Stefano Sabatini², Mark Hoffman², Zoran Filipi², Simona Onori² ¹Department of Electrical and Computer Engineering, ²Department of Automotive Engineering, Clemson University, Clemson, SC 29634 USA

Motivation

Upcoming Particulate Number (PN) regulations for gasoline vehicles may necessitate the use of Gasoline Particulate Filters (GPF)

Objective

- Simultaneously control the Three Way Catalyst (TWC) and GPF to maintain proper emission levels of CO, HC, NO_x and particulates while minimizing fuel consumption
- *A model-based optimization and control approach is used to design a real-time strategy to minimize emissions and fuel consumption
- Experimentally characterize impact of direct injection engine parameters on Particulate Number (PN), Particulate Size (PS), Particulate Mass (PM),

Bright-field TEM images of particulate matter [1]

Particulate number and particulate mass regulations for gasoline vehicle [2]

Europe [3]	USA California Air Resources Board (CARB) [4]
Euro 6b => 5 mg/km => 2014	LEV III => 3 mg/mile=> 2017-2021
Euro 6c => 5mg/km => 2017	LEV III => 1 mg/mile => 2025 -2028

PM limit for current and future coming regulations for gasoline vehicle in USA and Europe

GPF Challenges

Particulate accumulation could necessitate GPF regeneration drive cycle dependent

Back-pressure and active regeneration of the GPF affects fuel efficiency

Regeneration requires adequate oxygen, impacting TWC operation

and fuel consumption

Establish particulate production sensitivities for each parameter

Investigate parameter coupling

Control Oriented Model of Three Way Catalyst

- Semi-empirical oxygen storage model (OSC) including 'catalyst effective capacity (C)' as a function of temperature are being designed
 - Oxygen storage and release to/from the catalyst surface dominate the dynamic behavior of the catalyst
- *The control-oriented TWC model is designed as cascade of:
 - Catalyst temperature model
 - Dynamic oxygen storage model

Particulate Measurement (DMS 500)

Transient, system level testing for direct validation of control-oriented models and optimization strategies

Optimization

Overall system (Engine + TWC + GPF) will be optimized through modelbased techniques using a control-oriented model

Optimization-based control strategy will be designed with the purpose of maximizing fuel economy and validated experimentally

- *Catalyst Aging'* affects the catalytic activity (efficiency) and this effect can be seen through a decrease in 'catalyst effective capacity (C)'
- Including catalyst temperature dynamics in OSC model provides the opportunity to understand impacts of aging on TWC
- Characterization of catalyst aging will lead to an adaptive online control strategy along the life cycle of the catalyst

Designed for real-time implementation

- *****Robustness and near optimal performance will be emphasized
- Experimentally validated over real world drive cycles

References

[1] Cucchiella, Rodolfo, et al. "Mathematical form factor studies on the effect of water on airborne particles morphology using a bi-dimensional TEM image processing." Journal of Environmental Monitoring, 2009, pp. 181-186

[2] Kim, Youngjae, et al. "Strategies for particle emissions reduction from GDI engines" No. 2013-01-1556. SAE Technical Paper, 2013.

[3] http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32007R0715&from=EN

[4] http://www.arb.ca.gov/msprog/levprog/leviii/attacha1.pdf

[5] Filipi, Z., Hagena, J., and Fathy, H., "Investigating the Impact of In-Vehicle Transients on Diesel Soot Emissions", Thermal Science, 2008, Vol. 12, pp. 53-72