Approaches and advances to the challenges of treating emissions at low temperatures

Todd Toops

Jim Parks, Eleni Kyriakidou, Andrew Binder, Jae-Soon Choi

Oak Ridge National Laboratory

CLEERS Workshop April 26, 2015

Sponsors: Gurpreet Singh, Ken Howden, and Leo Breton Advanced Combustion Engines Program U.S. Department of Energy

Objectives and Relevance

Develop emission control technologies that perform at low temperatures (<150°C) to enable fuel-efficient engines with low exhaust temperatures to meet emission regulations Goal: 90% Conversion at 150°C

BAMA ADMINISTRATION Fuel Economy Standards In the year

\$8,200

admi cost cons

Consumers will have saved

\$1.7 TRILLION

6 billion metric tons

÷.

- Advance catalysts to enable commercialization of advanced combustion engine vehicles
 - Advanced combustion engines have greater efficiency and consequently lower exhaust temperature conditions
 - At low temperatures, catalysis is challenging and emissions standards harder to meet
 - Investigate "trap" material technologies that temporarily store emissions for later release and treatment

*Reactivity Controlled Compression Ignition (RCCI) [a Low Temperature Combustion mode] vs. Conventional Diesel Combustion (CDC)

<u>Approach</u>: Challenge and advance novel approaches for low temperature emission control

Begin with catalysts and materials in literature, BES program, and suggested by industry

Cost-effective and thermally stable materials durable to multiple pollutants

National Laboratory

This projectors "high risk-high reward" by designation volved (µmol/c Inlet mental approach with emphasis on challenging... Temperature (°C) (1) In full exhaustomixture **DRIFT Spectroscopy** (2) After hydrothermal aging 0.2 Sulfates Catalyst Reader After Sulfur & BET/Active Surface Area SXN1 SXN2 Carbonates SXN3 SXN4 1800 1600 1400 1200 1000 Wavenumber (cm⁻¹)

Areas of active research

- PGM-free mixed metal oxides
 - *Copper/Cerium/Cobalt oxide (CCC)
 - Collaboration with BES funded scientists
 - Sheng Dai and Steve Overbury (ORNL)
 - Center for Nanophase Material Science (ORNL)
- Support modifications for enhanced PGM activity
 - *Pd on zirconia modified silica and alumina
 - Nano-phase ceria and ceria/zirconia supported on silica and alumina
 - Target PGM addition to Cerium phases
 - SEA-approaches with highly stable Solvay supports
 - Collaborations with numerous organizations
 - UPMC (France); CNU (Korea); U. South Carolina; Solvay
- Trapping materials
 - *Currently investigating zeolites including ion-exchanged

* - also presented in more detail as posters by Andrew Binder and Eleni Kyriakidou

PGM-Free CuO_x-CoO_y-CeO_z Catalyst

Co-precipitated CuO_x , CoO_y , and CeO_2 (dubbed CCC catalyst) has shown to have both high CO oxidation activity and exceptional tolerance for propylene.

- PGM-Free CCC (black) shows unique lack of inhibition by HCs; for reference, Pd/ZrO₂-SiO₂ catalyst (blue) shows inhibition which shifts light-off to higher temps
- Hydrocarbon oxidation, however, is still relatively high for CCC catalyst

5

CCC structure and composition

 XRD analysis and EDX mapping shows that the Cu species is integrated into the lattices of both Co₃O₄ and CeO₂ evenly.

- STEM analysis confirms interfacing regions of Co₃O₄ and CeO₂ with high crystallinity for each phase.
- Ceria has a much smaller average particle size.

Separated Active Sites?

Binary catalyst comparisons indicate different sites are important for CO or C₃H₆ activity under simulated exhaust.

Low temperature CO ox. is significantly influenced by choice of oxide combination. Interface sites are important for CO oxidation.

 C_3H_6 is not significantly influenced by oxide combination or Co_3O_4 particle size. Co_3O_4 surface is important for C_3H_6 conversion.

DRIFTS provides insights into CCC hydrocarbon inhibition resistance; initial aging results obtained

DRIFTS data indicates a lower adsorption of C_3H_6 on CCC (compared to Pd/ZrO₂-SiO₂) and almost no effect on the Cucarbonyl binding site due to introduction of propene

- Maintains low temperature CO • oxidation even in the presence of multiple hydrocarbon species (propene + propane shown left)
- Short term (2 hr) thermal aging ٠ shows CCC to be very stable up to 800°C with major deactivation at 900°C

•

CCC + Pt/Al₂O₃ combination investigated to find **Iowest combined CO and HC light-off temps**

Areas of active research

- PGM-free mixed metal oxides
 - *Copper/Cerium/Cobalt oxide (CCC)
 - Collaboration with BES funded scientists
 - Sheng Dai and Steve Overbury (ORNL)
 - Center for Nanophase Material Science (ORNL)
- Support modifications for enhanced PGM activity
 - *Pd on zirconia modified silica and alumina
 - Nano-phase ceria and ceria/zirconia supported on silica and alumina
 - Target PGM addition to Cerium phases
 - SEA-approaches with highly stable Solvay supports
 - Collaborations with numerous organizations
 - UPMC (France); CNU (Korea); U. South Carolina; Solvay
- Trapping materials
 - *Currently investigating zeolites including ion-exchanged

- * also presented in more detail as posters by Andrew Binder and Eleni Kyriakidou
- 10

PGM/support study focusing on improving durability through support modifications

- Pd/ZrO₂ is a good relatively stable catalyst
- Want to enhance activity/durability through modifications

particles with aging (XRD)

Sample	Surface Area (m²/g)		
Fresh <mark>Pd/ZrO₂</mark>	92.6		
Aged Pd/ZrO ₂	24.3	/	
Fresh Pd/SiO ₂	447.4		
Aged Pd/SiO ₂	300.9	1	
Fresh Pd/ZrO ₂ -SiO ₂	404.4		
Aged Pd/ZrO ₂ -SiO ₂	325.3		

Incorporation of ZrO_2 on SiO₂ appears to enhance <u>hydrothermal stability</u> of Pd catalysts and silica SA

<u>Well dispersed</u> Pd on ZrO₂ (fresh). Aggregation of Pd particles begins with aging (still small).

Sulfur tolerance of ZrO₂ coating on SiO₂ improved Pd catalysts after deS at 600°C

ZrO₂ coating introduces surface acidity

- High acidity: benefit on HC oxidation vs. high basicity: high sulfur adsorption
- Pd/ZrO₂ has both strong acidic and basic sites, while Pt/Si has neither
- Pd/ZrO₂-SiO₂ has acidic sites but negligible basic sites
- Favorable for Pd dispersion, HC oxidation, and sulfur tolerance
- Trying to understand 600°C DeS improvement for Pd/ZrO₂-SiO₂

Reaction Conditions: 4000 ppm CO / 500 ppm NO / 1000 ppm C_3H_6 +4% O_2 + 5% H_2O in Ar, Total Flow: 200 sccm

Sulfation Conditions: 50 ppm SO₂+4% O₂ +5% H₂O in Ar, Total Flow: 200 sccm at 400°C

New synthesis of SiO₂@ZrO₂ core@shell improves ZrO₂ coverage of SiO₂ (vs. FY2014 results)

National Laboratory

Mater. 18, (2006) 2733.; **based on NOx TPD with UPMC method; ***with SiO₂ removed;

Areas of active research

- PGM-free mixed metal oxides
 - *Copper/Cerium/Cobalt oxide (CCC)
 - Collaboration with BES funded scientists
 - Sheng Dai and Steve Overbury (ORNL)
 - Center for Nanophase Material Science (ORNL)
- Support modifications for enhanced PGM activity
 - *Pd on zirconia modified silica and alumina
 - Nano-phase ceria and ceria/zirconia supported on silica and alumina
 - Target PGM addition to Cerium phases
 - SEA-approaches with highly stable Solvay supports
 - Collaborations with numerous organizations
 - UPMC (France); CNU (Korea); U. South Carolina; Solvay
- Trapping materials
 - *Currently investigating zeolites including ion-exchanged

¹⁴ * - also presented in more detail as posters by Andrew Binder and Eleni Kyriakidou

Baseline HC-trap materials selected to determine key controlling factors

- Zeolites chosen based on industry feedback and literature survey
 - Most studied materials in academic settings
 - Components of actual commercial technology (conventional ICEs)
- Investigating performance trends will give Information necessary for designing HC-traps tailored to advanced ICEs
- Systematic variation of key zeolite properties
 - Pore structure (Beta vs. ZSM-5)
 - Acidity (low vs. high SiO₂/Al₂O₃)
 - Cation type (H⁺ vs. Ag⁺)

Beta ZSM-5 (12-ring pore) (10-ring pore)

Large/medium pores allow easy HC

Zeolite type	SiO ₂ /Al ₂ O ₃ molar ratio	Nominal cation form	Surface area (m²/g)
Beta	25	H⁺	680
Beta	25	Ag⁺	NM
Beta	300	H⁺	620
Beta	300	Ag⁺	NM
ZSM-5	30	H⁺	405
ZSM-5	30	Ag⁺	NM
ZSM-5	280	H⁺	400
ZSM-5	280	Ag⁺	NM

Ag added to zeolites improves C₃H₆ trapping desorption

C₃H ₆ Trapping	Storage Capacity (mmol/g)	% Captured	% Released	Release Temp Peak
Beta	26.2	74.2	14.4	345°C
ZSM-5	25.1	66.7	4.0	135°C
Ag/Beta	34.3	89.9	43.9	360°C
Ag/ZSM-5	22.8	62.7	19.0	475⁰C

- Beta zeolite stores more C_3H_6 than ZSM-5
- Ag increases <u>both storage and desorption</u> for beta zeolite
- "Missing" C₃H₆ from TPD an important issue
 - strongly held cokes a potential cause

(1) Takamitsu, Y., Ariga, K., Yoshida, S., Ogawa, H., Sano, T. Bull. Chem. Jpn. 85(8), 869 (2012) (2) Moden, B., Donohue, J. M., Cormier, W. E., Li, H.-X. Top. Catal. 53, 1367 (2010)

Conditions:

167 ppm $C_3H_6 + 10\% O_2$,

Total Flow: 300 sccm

Summary

Objective: Develop emission control technologies that perform at low temperatures (<150°C) to enable fuel-efficient engines with low exhaust temperatures to meet emission regulations

Relevant To All ACEC Tech Team Combustion Techniques

Future Work: continue challenges of full exhaust mixture, aging, and S

Technical Backup Slides

Approach: Specific Details

- <u>Recent approach modification</u> based on feedback from project review with ACEC Tech Team in FY2015Q1:
 - Research team reviewing literature* from notable catalysis, chemistry, and materials journals to (1) provide science support to applied efforts, (2) fine tune strategy for project material studies, (3) identify new ideas to pursue
- **Continuing approach** to challenge materials in full exhaust with aging and poisons
 - CO oxidation is common metric in literature/BES program, but...EPA Tier 3 requires dramatic reductions in HC & NOx [thus, we challenge materials in full conditions]

Strategy ultimately aims to achieve EPA Tier 3 compliance

Low Temperature Protocols will be used for experiments

*backup slide has example list of journals reviewed

Collaborations

DOE Basic Energy Sciences Program

- Sheng Dai and Steve Overbury (ORNL)
- Center for Nanophase Material Science (ORNL)
- University of South Carolina
 - Professor John Regalbuto and student Andrew Wong
- International collaborations
 - UPMC, France (Dr. Cyril Thomas) & CNU, Korea (Prof. Sang-Wook Han)
- Johnson Matthey
 - Industry input from Haiying Chen
- CLEERS
 - Dissemination of data; presentation at CLEERS workshop
- USCAR/USDRIVE ACEC Tech Team Catalyst Sub-Team
 - Regarding low temperature protocols
- DOE-funded FOA Project led by Ford: Next Generation Three-Way Catalysts for Future, Highly Efficient Gasoline Engines
 - Catalysts being investigated for stoichiometric applications

Experiment Detail: added thermocouple in catalyst bed and using as temperature measurement

National Laboratory

Experiment Detail: Synthesis of SiO₂@ZrO₂ core@shell Oxide Support

Brij	30*	Zirconium Butoxide	
Syn	Sio Ethano thesis of silica s	O_2 O_2	phous
Material Sur	face Area (m²/g)	For 3 days oc	
ZrO ₂	97	ZrO ₂ SiO ₂ Agingtion at	
ZrO ₂ -SiO ₂	153	Call Call	
SiO ₂ @ZrO ₂	210	\rightarrow 0 \checkmark	
@ZrO ₂	117	Silica core and zirconium oxide shell after calcination at 700 °C	

- SiO₂ is located in the core (Si: 14 amu) and ZrO₂ in the shell (Zr: 40 amu).
- The ZrO_2 shell seems to be porous.
- Growth of SiO₂@ZrO₂ spheres. Shell is maintained. Diameter at: 700 °C: ~220 nm 900 °C: ~250 nm

Remaining Challenges and Future Work

	Accomplished		Remaining		Future Work		
PGM-Free Catalyst	(1)(2)(3)	Unique lack of inhibition demonstrated Hydrothermally aged Physical mixture advantage shown	(1) (2)	S exposure In series and deposited Pd combination studies	(1) (2) (3)	S studies Pd combination studies More fundamental studies	
SiO ₂ -ZrO ₂ Support	(1)	Completed S studies of FY14 SiO_2 -Zr O_2 support New core-shell $SiO_2@ZrO_2$ catalyst made	(1) (2) (3)	S exposure on core-shell catalyst Hydrothermal aging (more) Characterization (more)	(1) (2) (3)	S studies Hydrothermally aging studies Characterization of core-shell	
Zeolite Traps	(1)	Two zeolites with and without Ag addition characterized Initial mixture species effects studied	 (1) (2) (3) (4) 	Characterization of more materials Hydrothermal aging S exposure Mixture species studies (more)	 (1) (2) (3) (4) 	Mixture species studies Protocol development Aging and S exposure More materials	

