

General Motors

Collaborative Research Laboratory

UW-Madison Engine Research Center

Micro-scale experimental evaluation of filtration of exhaust with low particle mass concentration

Sandeep Viswanathan & David Rothamer

University of Wisconsin-Madison Engine Research Center

Acknowledgements

University of Wisconsin

- Stephen Sakai, David Foster, Todd Fansler, Mike Andrie
- General Motors
 - Paul Najt, Kushal Narayanaswamy, Arun Solomon
- Pacific Northwest National Laboratory
 - Alla Zelenyuk, Mark Stewart, David Bell, Jackie Wilson
- Filter sample suppliers

Page 3 -

Overview

- Background & Objective
- Experimental Setup
- Characterization
 - Particulate matter (Number / Mass)
 - Filter (Porosity, Mean pore diameter, Permeability)
- Filtration experiments
- Results on trapped mass basis
- Summary

Background Stages of filtration

Deep-Bed Filtration

- Particles retained throughout filter medium
- Length scale for particle capture changes by several orders of magnitude
- Low trapped mass \rightarrow GPF

Cake Filtration

- Particles retained at media surface by filter cake
- Length scales remain practically unchanged
- Filtration efficiency > 99 %
- High trapped mass \rightarrow DPF

Clean Filter

Cake Filtration

Fig. Different stages of filtration

Collaborative Research Laboratory

Page 4 -

Motivation & Objective

<u>Motivation</u>

- GPFs → Higher exhaust temperature → Low PM mass concentration
- \rightarrow More porous filters
- \rightarrow Longer deep bed filtration
- Experiments to help develop new deep-bed models to improve filter design

<u>Objective</u>

- Systematic study to determine impacts of
 - Inlet particle size distribution (PSD)
 - Trapped Mass
- Compare SIDI filtration results with diesel data

EXPERIMENTAL SETUP

Page 6 -

Collaborative Research Laboratory

	SIDI	Diesel (Reference)
Single cylinder adapted from	Opel 2.2 I Ecotec	Cummins N14
Displacement (I)	0.55	2.3
Compression Ratio	11.95	14.15
Bore (mm) x Stroke (mm)	86 x 94.6	140 x 152
Piston shape	Slightly domed	Mexican-hat
Injector	1 hole, Pressure swirl	8 hole (200 µm), XPI
Fuel	EPA Tier II EEE	# 2, ULSD

Page 7 -

Collaborative Research Laboratory

Pressure drop

- Filtration velocity
 - 8 cm/s (Diesel)
 - 2.5 cm/s (SIDI)

EEPS – Engine exhaust particle sizer SMPS – Scanning mobility particle sizer

٠

PARTICULATE & FILTER CHARACTERIZATION

Exhaust Characterization Number concentration

Fig. SIDI Particle Size Distribution (PSD)

 $[\#/kW-hr] = [\#/cc]*1/\blacksquare \rho \downarrow \blacksquare exhaut @SMPS [cc/kg]*m \downarrow fuel + m \downarrow air [kg/hr]/Ind. Power[kW]$

Page 10 -

Exhaust Characterization

Mass concentration

- Gravimetric measurements performed using 47 mm filters on diesel exhaust
- Integrated particle size distribution (IPSD) method used to estimate mass concentration in SIDI exhaust

Fig. Schematic for IPSD method

$$\begin{split} M\downarrow IPSD = \int log d\downarrow m1 \ \uparrow log d\downarrow m2 \ \hlinelog d\downarrow m \\ d\downarrow m \ * dN/dlog d\downarrow m \) dlog d\downarrow m \end{split}$$

Pacific Northwest

NATIONAL LABORATOR

• Good Agreement with similar data in literature

CPMA – Centrifugal particle mass analyzer

(Zelenyuk et al.)

Page 13 -

Exhaust Characterization IPSD applied to Diesel data

Fig. Estimated mass using IPSD method vs. gravimetric (Diesel)

- PSD extrapolated to 1000 nm using log-normal fit
- IPSD method used to estimate total mass concentration in diesel exhaust
 - Similar results using different mass-mobility fits
 - Underestimates mass concentration

Exhaust Characterization Estimated Mass Concentrations

Fig. Total particle number & mass concentrations

- Estimated mass spans several orders of magnitude
- Little correlation between number and mass concentration trends
- Only Rich SIDI operation comparable with Diesel conditions

Filter Characterization

Sample to sample variation

- Different filters from same batch used for each experiment
- Intrusion porosimetry performed on filter sample

Material	Mean Diamet	Pore er (µm)	Porosity (%)		⁽⁶⁾ Thickness		
	Α	В	Α	В	(mm)		
Cordierite	14	15.5	43.6	42.5	0.98		

Table. Filter properties

 $A \rightarrow$ Manufacturer Specifications $B \rightarrow$ Intrusion porosimetry on random sample <u>GM</u>

Filter Characterization

Sample to sample variation

- Different filters from same batch used for each experiment
- Intrusion porosimetry performed on filter sample
- Filter permeability (*k*) measured to identify sample to sample differences.

Material	Mean Diamet	Pore er (µm)	Porosity (%)		Thickness		
	Α	В	Α	В	(mm)		
Cordierite	14	15.5	43.6	42.5	0.98		

Table. Filter properties

 $A \rightarrow$ Manufacturer Specifications $B \rightarrow$ Intrusion porosimetry on random sample

Fig. Sample to sample variability between wafers used for each experiment

- $\mu \rightarrow$ viscosity of the fluid
- $t \rightarrow$ filter thickness
- $\mathcal{V} \rightarrow$ flow velocity through the filter
- $\Delta P \rightarrow$ pressure drop across the filter.

Collaborative Research Laboratory

Page 17 -

FILTRATION EXPERIMENTS

Page 18 -

Collaborative Research Laboratory

Filtration Experiments Scaled pressure drop (SPD)

Fig. Evolution of scaled pressure drop with loading time

■Scaled@Pressre Drop = Pressure Drop/Filtration Velocity HDD → Clear distinction between wall loading and cake build up regions

- SIDI → Only the Rich & HL conditions showed increase in SPD
- No distinct transition from wall loading to cake buildup observed for the Rich case
- Holder effect was 0.11±0.1 (kPa-s/cm)

Fig. Evolution of scaled pressure drop with loading time & trapped mass

Trapped Mass (t)= $\int 0\uparrow t$ ([M↓IPSD,in – M↓IPSD,out]* v*GFA)dt

Assumed geometric filtration area (GFA) of 1.1 [m²/l]

- Consistent overlap between SIDI & Diesel results
- Minimum deposit before SPD changes → Critical deposit
- Outliers \rightarrow HL & EOI 220-2

Page 20 -

Filtration Experiments Filtration Efficiency (FE)

Fig. Evolution of particle number based filtration efficiency with time

- Number based FE
 - Relatively high
 - Dominated by smaller particles
 - No consistent overlap between conditions
- Possible sensitivity to
 - Filter sample variability
 - Inlet size distribution
 - Experimental conditions & artifacts

Fig. Evolution of particle number (left) and mass(right) based filtration efficiency with trapped mass

- Consistent overlap between SIDI & Diesel mass based FE.
- Critical deposit for mass based FE different from that for NPD
- Outliers → HL & EOI 220-2

Fig. Evolution of scaled pressure drop (left) and mass (right) based filtration efficiency with trapped mass

- HL experiments at 1.9 cm/s & 95°C
- EOI 220-2 on filter sample with low permeability
- Possible shift in critical deposit observed
- Method shows sensitivity to experimental conditions and sample variability

Filtration of SIDI Particulate Summary and Conclusions

- Micro-scale filtration experiments on DPF-like filter samples
- IPSD method
 - Used mass-mobility data from SIDI exhaust
 - Reasonable agreement with HDD filter measurements
 - Estimate trapped mass in filter
- Filtration performance (SPD, and mass based FE) evolution showed consistent overlap
- Method sensitive to small changes in filter properties and loading conditions

Thank You. Questions?

GM

Collaborative Research Laboratory

Page 25 -

BACKUP SLIDES

Page 26 -

Collaborative Research Laboratory

Background PM Regulations

Particulate number versus mass per km for SI engine technologies. Adapted from [1]. **US regulations are not based on NEDC*

- Tightening PM regulations
 on SIDI engines worldwide
- Particle number regulations represent a significant challenge in Europe
- Particle mass emissions become challenging in the US for EPA tier III and LEV III
- Improved understanding of SIDI PM characteristics and filtration needed
 - → Enable improved aftertreatment system design

	Heavy Duty Diesel	SIDI		
Emissions Measurement	Nicolet FTIR	Horiba gas bench		
PM Sampling system	Dekati, 2-stage mini-dilution tunnel (MDT)			
PM characterization – Particle Size Distributions	TSI-3080 SMPS, 3081 I-DMA, 3010 CPC			
PM characterization – Particle mass	47 mm gravimetric CPMA			
Temperature (Sampling location / dilution probe / primary dilution / secondary dilution / characterization instruments)	265 / 175 / 100 / Ambient / 52	260 / 265 / 235 / Ambient / 52		
Sample dilution ratio / Estimation method	~ 20 / CC	D2 conc.		

Experimental Setup Engine Information

- Single cylinder SIDI engine
 - LCH 2.2L Ecotec engine used by Opel in Europe
- 4-valve pentroof head with slightly domed flat-top piston

• Stoichiometric SIDI architecture

Compression Ratio	12.0
Bore [mm]	86.0
Stroke [mm]	94.6
Displacement [cm ³]	550
Connecting Rod Length [mm]	152.4
Intake Valve Open [CAD]	-360
Intake Valve Close [CAD]	-150
Intake Valve Lift [mm]	9.9
Exhaust Valve Open [CAD]	+155
Exhaust Valve Close [CAD]	+360
Exhaust Valve Lift [mm]	9.9

Characterization

Operating conditions

Engine				SIDI				HDD
Condition		EOI 280	EOI 220	MBT -15	Rich	Heavy Load	CDC- ML	MIDC-ML
Load	(bar-IMEP)	3.5	3.3	2.7	3	6.5	11.5	12.1
Speed	(rpm)	2100	2100	2100	2100	2100	1200	1200
Fuel injection pressure	(bar)	110	110	110	110	110	850	1200
Injection timings	(aTDC)	-280	-220	-220	-220	-220	-7	-25,-8,-7
Spark timing	(aTDC)	-25	-25	-10	-25	-25	-	-
Air/ fuel ratio	-	15	15	15	13	15	22.3	27
Intake manifold pressure	(kPa-abs)	35	35	35	31	60	149	167
Exhaust back pressure	(kPa-abs)	102	102	102	102	102	165	165
Exhaust temperature	(°C)	593	592	700	560	630	620	508

Page 32 -

Collaborative Research Laboratory

Particulate Characterization SIDI Operating Conditions

Condition \rightarrow	Late Inj.	Ret. Spark	Early Inj.	Rich	Heavy Load
Speed (RPM)	2100	2100	2100	2100	2100
Load – IMEP _{gross} [kPa]	334 ± 5	265 ± 5	350 ± 3	300 ± 5	650 ± 10
CA 50 (CAD)	8 ± 0.5	*	8.8 ± 0.5	6.7 ± 0.5	12 ± 0.5
Equivalence Ratio (Φ)	0.98	0.98	0.98	1.13	0.98
IMAP [kPa]	35	35	35	31	60
Injection pressure [MPa]	11	11	11	11	11
Spark Timing [CAD]	-26	-11	-26	-26	-15
Injection Timing [CAD]	-220	-220	-280	-220	-220

Changes relative to baseline (Late Inj.)

Emissions

CO ₂ [% Volume]	13.7	14.6	14.6	12.1	13.7
O ₂ [% Volume]	1.3	0.8	1.1	0.6	1.2
CO [% Volume]	1.0	0.35	0.55	4.2	0.98
HC [ppm]	670	300	1000	1600	500
NO [ppm]	1100	300	2200	730	1500

Page 33 -

Collaborative Research Laboratory

GI

Particulate Characterization Comparison to Diesel Operation

Diesel engine* operating conditions for comparison to SIDI data

Mode	CDC Medium Load (ML)	MIDC Medium Load (ML)	MIDC Low Load (LL)
Speed (rpm)	1200	1200	1200
IMEP (bar)	11.45	12.12	3.5
Intake Pressure (kPa)	149	167	158
Injection Pressure (bar)	850	1200	1200
# of Injections	1	3	2
Injection Timing [CAD]	-7	-25, -8, -7	-8, -7
Injected Fuel Mass [mg]	151.25	30, 15, 106.25	15, 61
A/F Ratio	22.3	27	67.9

*Engine used for measurements was a single-cylinder Cummins N14 heavy-duty diesel engine, displacement = 2.3 L, 8 x 200 μ m hole electronic unit injector

CDC = Conventional Diesel Combustion MIDC = Multi-Injection Diesel Combustion

Particulate Characterization SIDI Operating Conditions

In-cylinder pressure for five different SIDI operating conditions

Net apparent heat release rate for five different SIDI operating conditions

GN

Particulate Characterization

Summary

- Wide dynamic range of size distribution possible during SIDI operation
- SIDI particle number and mass are well below typical diesel values as expected
- SIDI particulate is generally more compact (larger D_f) than diesel particulate
- Wide range of particle shapes are present under certain conditions
- SIDI particles contain a large fraction of organics ~40-60% bound into the particulate
 - Organics not due to volatile particles

Characterization results provide insights into particulate formation and boundary conditions for filtration experiments

Filtration Experiments Experimental conditions

Fig. Comparison of experimental conditions

Real time measurements of

- Upstream PSD
- Downstream PSD
- Pressure drop
- Downstream pressure
- Filtration velocity (from temperature

& dilution ratio)

Trapped Mass (t)= ∫0↑*t‱([M↓IPSD,in – M↓IPSD,out]*v*GFA)dt*

> Assumed geometric filtration area (GFA) of 1.1 [m²/l]

Filtration Experiments

Schematic

Trapped Mass (t) = $\int 0 \uparrow t = ([M \downarrow IPSD, in - M \downarrow IPSD, out] * v * GFA) dt$

Assumed geometric filtration area (GFA) of 1.1 [m²/l]

J١

Filtration Experiments Penetration

Heavy Load
EOI 220
MBT-15
EOI 280

Rich

Fig. Evolution of particle penetration with loading time Page 40 -

Penetration= Downstream Concentration / Destream Concentration

90 & 150 nm particles

 Rate of change in penetration increases with mass concentration of SIDI condition

50 nm particles

- Increase in penetration of seen for some SIDI conditions
- Rich & HL conditions showed no increase

Filtration Experiments Penetration

Consistent overlap between SIDI & Diesel results for 90 and 150 nm particles

Reason behind discrepancy for 50 nm particle needs to be investigated further

Fig. Evolution of particle penetration with loading time & trapped mass

Filtration Experiments Normalized pressure drop (NPD)

■Scaled@Pressre Drop=Pressure Drop/Filtration Velocity

- Pressure drop was scaled to account for small changes in filtration velocity
- Holder effect was 0.11±0.1 (kPa-s/cm)
- HDD → Clear distinction between wall loading and cake build up regions

Fig. Evolution of scaled pressure drop with loading time

Filtration Experiments Normalized pressure drop (NPD)

Scaled@Pressre Drop = Pressure
Drop/Filtration Velocity

Fig. Evolution of scaled pressure drop with loading time

- Pressure drop was scaled to account for small changes in filtration velocity
- Holder effect was 0.11±0.1 (kPa-s/cm)
- HDD → Clear distinction between wall loading and cake build up regions
- SIDI → Only the Rich & HL conditions showed increase in NPD
- No distinct transition from wall loading to cake buildup observed for the Rich case

Method shows sensitivity to experimental conditions and sample variability

Trapped Mass (g/l)

10⁻²

10⁰

10⁻⁴

10⁻⁶