

Effect of Pore Structure on the activity of Cu/ZSM-5 Catalyst in NH₃-SCR: Studies of Simulated Exhaust and Engine Bench Testing

<u>Zhenguo Li^{1,2}</u>, Junhua Li¹, Xiaoyin Chen², Johannes W. Schwank² ¹Tsinghua University, ²University of Michigan

> 2015 DOE CLEERS Workshop April 27-29, 2015 University of Michigan - Dearborn

- 1、Background
- 2、Research Status
- 3、Experiments
- 4、 Results and discussion

1

5、Conclusions

Background

NO_x emissions

- A real threat in China
- Sources of acid rain and photochemical smog
- Half of NO_x emissions from automotives (especially **diesels**).

NO_x Removal Solution

SCR System

 NH₃-SCR system (NO_x conversion > 90%)
 SCR catalyst is most critical

To meet stringent standard, zeolite-based catalysts are promising for diesel emission control.

The most important issues for real applications include higher thermal stability and durability at high temperatures.

Yeom, Y. H. et al.*J. Catal.* **2005**, *231*, 181–193. Sjovall, H. et al. *Appl. Catal.*, *B* **2006**, *64*, 180–188. Carja, G.et al.Appl. Catal., B 2007, 73, 60–64. Qi, G. S.et al T. Appl. Catal., B 2005, 60, 13–22. Yeom, Y. H. et al J. Phys. Chem. B 2004, 108, 5386–5392.

Focuses of current research

- Reaction mechanism and active site
- Acid site
- Deactivation (HC & Sulfur, hydrothermal)

Active site vs Acid site:

Table 2. Physicochemical Properties of the Three MFI Zeolites

The active sites are related to acid sites (amount and strength) of ZSM-5, which can be adjusted by cations

, 1							
	H-[Al]-ZSM-5	H-[Al,Fe]-ZSM-5	H-[Fe]-ZSM-5				
BET surface area (m ² /g)	451	467	487				
pore volume (cm ³ /g)	0.25	0.24	0.25				
(micropore/mesopore volume ratio)	(0.16/0.09)	(0.16/0.08)	(0.16/0.09)				
crystal size ^a (µm)	1.5-2	2-3	2-2.5				
total acid amount ^b $(\mu mol/g)$	50.4	51.0	49.1				
acid content ^c $(\mu mol/g)$	49.9	50.2	48.7				
(Bronsted/Lewis acid site ratio)	(41.6/8.3)	(41.0/9.2)	(37.1/11.6)				
TPD peak temperature (°C)	350	315	280				
"Estimated from SEM images. "From NH ₃ TPD measurements. "From pyridine IR analysis at 150 °C.							

Reaction mechanism and active sites:

Deka, U., I. Lezcano-Gonzalez, et al. <u>ACS</u> <u>Catalysis 2013</u>,**3**(3): 413-427.

Lee, K.-Y., S.-W. Lee, et al. Industrial & Engineering Chemistry Research 2014, 53(24): 10072-10079.

ZSM-5-based Catalysts

Focuses of current researches

- Reaction mechanism and active site
- Acid site
- Deactivation (HC & Sulfur, hydrothermal)

Poisoning and hydrothermal aging:

Engine bench testing data on the influence of pore structure on NOx activity of ZSM-5 catalysts are scarce. In our study, the performance of 3%Cu-ZSM-5 powder and cordierite catalysts (with two

types of commercial ZSM-5-A and ZSM-5-B) was investigated with simulated automobile exhaust gas and engine bench testing.

Catalyst preparation

Powder sample

- Two types of commercial ZSM-5
- Cu/ZSM-5: Cu loading 3wt.% (noted CuZ-A and CuZ-B)
- Impregnation

Monolith sample

- Monolith: 400 cpsi, Corning
- Wash Coating

Powder Activity

500 ppm NO, 500 ppm NH₃, 5% O₂ 5%H₂O,N₂ balance,1000mL/min, 30,000 h⁻¹. Thermo IS10 FTIR gas analyzer.

Characterization

BET
XRD
XPS
TPR
TPD

Engine Bench Test

Engine	YC6L-280-40		
Туре	Vertical, in-line, water-cooled, four-stroke, turbocharged, intercooled and 6-cylinders		
Total displacement	<u>8.42L</u>		
Compression ratio	17.5: 1		
Rated speed	2200 r/min		
Rated power	206 kW		
Maximum torque speed	1200-1700 r/min		
Maximum torque	1100 N.m		
Emission	EURO IV		
Exhaust after- treatment system	<u>SCR, 10.5 × (6+3+6) /inch</u>		

YC6L-280-40

Results and Discussion

Performance of powder catalysts with simulated exhaust gas

DeNO_x catalytic activity: CuZ-B did not significantly change in presence of water vapor compared to DeNO_x catalytic activity of CuZ-A.

Performance of light-off

Key Results:

- Light-off temperature of CuZ-B: 215 °C at 15,000 h⁻¹.
- CuZ-B shows higher NO_x conversion than CuZ-A at GPSV = 15,000-45,000 h⁻¹.

Performance in Engine Bench Test

Performance under different space velocities

Key Results:

- When GPSV < 30,000 h⁻¹, similar NOx conversion for CuZ-A and CuZ-B at 240 and 350 °C
- When GPSV \geq 30,000 h⁻¹, CuZ-B exhibits higher NO_x activity.

Performance in Engine Bench Test

Performance under different NH₃/NO_x Ratios

Key Results:

- CuZ-B shows higher NO_x conversion than CuZ-A at NH₃/NO_x=0.5, 0.8, and 1.2.
- CuZ-B shows less dependence on NH_3/NO_x ratio than CuZ-A.

Sample	S _{BET} (m²/g)	^a V(Total) cm ³ g ⁻¹	^b V(Micro) cm ³ g ⁻¹	^c Average pore size nm	^d V(Meso) cm ³ g ⁻¹	Crystallinity (%)
ZSM-5-A	415	0.2510	0.1458	2.42	0.1052	100
ZSM-5-B	608	0 8880	0.1957	5.58	0.6923	84.1

BET: ZSM-5-B is higher than ZSM-5-A sample. Total pore volume: ZSM-5-B is about 3.5 times higher than ZSM-5-A . Mesopores beneficial for improving pore volume of ZSM-5 material.

ZSM-5-B: Mesopores in the range of 35-60 nm

- More CuO in CuZ-A observed by XRD;
- Cu species have been well dispersed in the surface and bulk of ZSM-5-B zeolite
- The crystallinity of CuZ-B is 84%, compared to 100% of CuZ-A

Peak(α): Surface CuO_x reduced to Cu metal, and isolated Cu²⁺ ions to Cu⁺ at 200–400°C.
 Peak(β): Cu²⁺ (Ion exchanged site) and Cu⁺ reduced to Cu metal at 400–600°C.

- CuO (Cu species) : Two shake-up satellite peaks at 943.1 and 963.5 eV
 Cu_{2p3/2} : 933.1 eV (with a shoulder peak at 935.4 eV)
 Cu_{2p1/2} : 952.8 eV
 - Cu_{2p3/2}: peak I 933-934 eV tetrahedral Cu²⁺ site peak II 935-936eV - octahedral Cu²⁺ site

NH₃-TPD

- Weak acid sites (α): Non-framework Lewis acid sites of ZSM-5 and surface copper cations
- Strong Brönsted acid sites (β): On Si–O–Al groups and bulk copper cations

Conclusions

1. Higher porosity facilitates the NO_x conversion of CuZ-B catalyst. The high BET area, total pore volume and lower crystallinity provide more Cu active sites and acid sites.

2. The surface CuO_x species and ion-exchanged sites of Cu species in CuZ-B catalyst have higher redox property, higher Cu ion mobility, and strong interaction with Al and Si.

3. CuZ-B has higher number of strong Brönsted acid sites based on Si–OH–Al groups and Cu²⁺ ions located at the ion-exchanged sites. The Brönsted acid sites might be the main active sites in NH₃-SCR reaction.

4. Engine-bench testing results show that CuZ-B catalyst has higher $DeNO_x$ activity than CuZ-A and it is not sensitive to the NH_3/NO_x ratio and space velocity.

5. Stringent emission standards can possibly be met with CuZ-B catalyst by slightly over-dosing urea without exceeding NH_3 slip targets.

