Zeolite Supported Pd Catalysts for Low Temperature NOx and HC storage

Hai-Ying Chen
Johnson Matthey Inc.

April 6, 2016
Outline

- Challenges in controlling NOx and HC emissions at low temperatures
- Development of zeolite supported Pd catalysts for low temperature NO/HC storage and conversion
- Characterization of the active sites in zeolite supported Pd catalysts
- Fully formulated catalysts with zeolite supported Pd catalysts
- System demonstration on vehicles
- Modelling study
Outline

• Challenges in controlling NOx and HC emissions at low temperatures
 • Development of zeolite supported Pd catalysts for low temperature NO/HC storage and conversion
 • Characterization of the active sites in zeolite supported Pd catalysts
 • Fully formulated catalysts with zeolite supported Pd catalysts
 • System demonstration on vehicles
• Modelling study
Federal Tier 3 and CA LEV III emission standards call for significant reduction of criteria pollutants

Federal Tier 3 standards

<table>
<thead>
<tr>
<th>Bin</th>
<th>NMOG+NOx</th>
<th>PM*</th>
<th>CO</th>
<th>HCHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bin 160</td>
<td>160</td>
<td>3</td>
<td>4.2</td>
<td>4</td>
</tr>
<tr>
<td>Bin 125</td>
<td>125</td>
<td>3</td>
<td>2.1</td>
<td>4</td>
</tr>
<tr>
<td>Bin 70</td>
<td>70</td>
<td>3</td>
<td>1.7</td>
<td>4</td>
</tr>
<tr>
<td>Bin 50</td>
<td>50</td>
<td>3</td>
<td>1.7</td>
<td>4</td>
</tr>
<tr>
<td>Bin 30</td>
<td>30</td>
<td>3</td>
<td>1.0</td>
<td>4</td>
</tr>
<tr>
<td>Bin 20</td>
<td>20</td>
<td>3</td>
<td>1.0</td>
<td>4</td>
</tr>
<tr>
<td>Bin 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

California LEV III standards

Figure 1. LEV III Fleet Average NMOG+NOx Standards

LDT1: 0–3750 lbs LVW. LDT2: 3751–8500 lbs LVW.

www.dieselnet.com
Fuel economy and Green House Gases (GHG) are also part of the future emission legislations.

Additional GHG limits:
- N_2O: 0.010 g/mile
- CH_4: 0.030 g/mile

www.theicct.org
Advanced engines can improve the fuel efficiency, but result in lower exhaust temperatures

- Advanced combustion, downsizing of engine, turbocharging, all result in lower exhaust temperatures

- Diesel CO₂ reduction leads to even lower exhaust temperatures
Control of cold-start emissions is crucial to meet the future emission regulations

- e.g. SULEV30 (HC + NOx = 30 mg/mile)
 - Current TWC, DOC, SCR, NAC catalysts function at >~200°C
 - ~100-200s for these components to reach the operating temp
 - Engine-out HC/NOx emissions exceed SULEV30 during the cold start period
Zeolite based HC traps can store HC’s at low temperatures, but release them too early.

HC storage at 80°C
1500ppm HC inlet

HC release
Temp ramping rate 40°C/min

Zeolite
Zeolite/M1
Zeolite/M2
Conventional NACs store NO at LT but with low trapping efficiency, oxidation of NO to NO\textsubscript{2} is kinetically limited at LT.
Outline

• Challenges in controlling NOx and HC emissions at low temperatures

• Development of zeolite supported Pd catalysts for low temperature NO/HC storage and conversion

• Characterization of the active sites in zeolite supported Pd catalysts

• Fully formulated catalysts with zeolite supported Pd catalysts

• System demonstration on vehicles

• Modelling study
Laboratory evaluation protocol

- NO/HC storage, release, and conversion testing

![Graph showing temperature changes over time with labeled time periods: Preconditioning, NOx, CO, HC on, Storage, 100 s (storage), TPR 100°C/min.]

-
 - Preconditioning: 10% O₂ / 5% H₂O / 5% CO₂
 - Storage: 200 ppm NO/200 ppm CO/500 ppm (C₁)(C₁₀H₂₂)/10% O₂ / 6% H₂O / 6% CO₂
 - TPR: 100°C/min

- S.V.: 30,000 hr⁻¹
 - (Flow rate = 21.2 L / min)

- Hydro-thermally aged 750°C/5% H₂O/16h
Zeolite supported Pd catalysts exhibit high NO storage capacity with nearly 100% trapping efficiency.
Zeolite structures have a strong influence on the temperature profiles of the NOx storage capacity.
Zeolite structures also affect the NOx release profiles
Zeolite structures affect the HC storage and release profiles – the larger the pores, the higher HC storage capacity
Outline

• Challenges in controlling NOx and HC emissions at low temperatures

• Development of zeolite supported Pd catalysts for low temperature NO/HC storage and conversion

• Characterization of the active sites in zeolite supported Pd catalysts

• Fully formulated catalysts with zeolite supported Pd catalysts

• System demonstration on vehicles

• Modelling study
Pd is located at the exchange sites of the zeolite supports.

IR spectra of 1%Pd/Zeolite (red) and bare zeolite (black) samples after dehydration at 400 °C under 6%O₂/Helium for 2 hours; (A) BEA, (B) MFI; (C) CHA.
CO adsorption experiments confirm that Pd is at the exchange sites.
Pd at the exchange sites adsorbs NO directly, other non-zeolite supported Pd catalysts need formation of nitrates

Transmission IR spectra of NO adsorption on 1%Pd/CHA (red) and 1%Pd/Alumina (black) [samples were dehydrated at 400 °C under 6%O₂/Helium for 2 hours; spectra recorded after 15 min exposure to 500ppm NO/Helium at 100°C]
The presence of H$_2$O has little impact on NO adsorption on Pd sites

DRIFTS spectra recorded at 100 °C for Pd-CHA after exposure to (NO + O$_2$) with or without H$_2$O in the gas mixtures
Zeolite structures affect the NO bonding strength

Transmission spectra of NO adsorption on Pd/Zeolites
Pd/zeolite shows good sulfur tolerance and can be desulfated at >600°C under lean conditions.
Outline

• Challenges in controlling NOx and HC emissions at low temperatures

• Development of zeolite supported Pd catalysts for low temperature NO/HC storage and conversion

• Characterization of the active sites in zeolite supported Pd catalysts

• Fully formulated catalysts with zeolite supported Pd catalysts

• System demonstration on vehicles

• Modelling study
dCSC™ technology utilizes Pd/zeolite providing combined functions of NOx trap, HC trap, and DOC

- **NOx Trap**
 - Store NOx during cold start
 - Thermal release of NOx
 - Low temperature NOx conversion activity
 - N_2 selectivity

- **HC Trap**
 - Improved HC storage capacity
 - Additional HC conversion activity

- **DOC**
 - Improved CO/HC light-off activity
 - Comparable NO to NO$_2$ activity

dCSC™ technology
dCSC™ catalysts exhibit high NOx storage capacity/efficiency, NOx thermally release at ~200-350°C

H.-Y. Chen, et al., SAE 2013-01-0535
dCSC™ catalysts also show improved HC/CO conversion, less N₂O formation, and similar NO oxidation activity.

H.-Y. Chen, et al., SAE 2013-01-0535
dCSC™ catalysts can be regenerated at ~350°C

(750°C/5%H₂O/16h aged, SV=30K, NO, CO=200ppm, C10=500 ppm, 10% O₂)

H.-Y. Chen, et al., SAE 2013-01-0535
Long-term sulfur tolerance and desulfation properties of the dCSC™ catalyst were evaluated by SOx/DeSOx cycle test.

- **Sulfation**
 - Perframnce test (100 s store+TPR)

- **Desulfation**
 - Perframnce test (100 s store+TPR)

- **SOx/DeSOx**
 - Repeat 4 times

- **Perframnce test (100 s store+TPR)**
 - Repeat 10 times

Population:
- 10% O$_2$ / 5% H$_2$O / 5% CO$_2$
- 200 ppm NO/200 ppm CO/500 ppm (C$_1$)$_3$H$_6$ /10% O$_2$ / 5% H$_2$O / 5% CO$_2$
- 200 ppm NO/200 ppm CO/1% (C$_1$)$_3$H$_6$ /10% O$_2$ / 5% H$_2$O / 5% CO$_2$
- 10 ppm SO$_2$ /200 ppm NO/200 ppm CO/500 ppm (C$_1$)$_3$H$_6$ /10% O$_2$ / 5% H$_2$O / 5% CO$_2$

- **SO$_2$**
 - = 10 ppm @ 350C for 70 min (0.5 g S/L cat)

- **S.V.**
 - : 30,000 hr$^{-1}$ (Flow rate = 21.2 L / min)
The dCSC™ catalyst has good sulfur tolerance is stable after long-term sulfation/desulfation testing.

Sulfation was carried at 350°C with an exposure level of 0.5g sulfur /L catalyst

Desulfation was carried at 650°C gas inlet (~720°C catalyst bed) temperature under lean conditions for 15 minutes
• Challenges in controlling NOx and HC emissions at low temperatures

• Development of zeolite supported Pd catalysts for low temperature NO/HC storage and conversion

• Characterization of the active sites in zeolite supported Pd catalysts

• Fully formulated catalysts with zeolite supported Pd catalysts

• System demonstration on vehicles

• Modelling study
dCSC™ catalyst vehicle testing on EU LDD

- Eu6 3.0L engine

 - DOC
 PGM loading: 115g/ft³ 4:1(Pt:Pd), total volume: 2.0 L
 - dCSC™
 PGM loading: 152g/ft³ 8:13(Pt:Pd), total volume: 2.0 L

- Aging
 DOC/dCSC™ – hydrothermal 800°C for 16 hours
 SCRF® - hydrothermal 800°C for 16 hours
dCSC™ catalyst show excellent NOx storage and release properties
dCSC™ catalyst engine testing on a 8.9L engine HDD FTP transient test cycles

![Diagram of Urea Dosing](image)

<table>
<thead>
<tr>
<th>System</th>
<th>Fresh/Aged</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold Start Concept catalyst</td>
<td>Aged at 650°C/100 hrs</td>
<td>10.5x6”</td>
</tr>
<tr>
<td>SCR-DPF</td>
<td>Aged at 650°C/100hrs</td>
<td>10.5x12”</td>
</tr>
<tr>
<td>SCR</td>
<td>Aged at 650°C/100hrs</td>
<td>HP substrate, 600 cpsi, 10.5x6”</td>
</tr>
</tbody>
</table>

M. Naseri, et al., SAE 2015-01-0992
Systems with dCSC™ catalyst + SCRF show promise for HDD low temperature NOx emission control

M. Naseri, et al., SAE 2015-01-0992
• Challenges in controlling NOx and HC emissions at low temperatures

• Development of zeolite supported Pd catalysts for low temperature NO/HC storage and conversion

• Characterization of the active sites in zeolite supported Pd catalysts

• Fully formulated catalysts with zeolite supported Pd catalysts

• System demonstration on vehicles

• Modelling study
Modeling study has been carried out to compare various system configurations

- Different system configurations (simulated)
 - **System 1**
 - DOC
 - CSF
 - SCR
 - ASC
 - PGM1
 - 10.5”x4.5”
 - 12”x12”
 - 10.5”x10”
 - 10.5”x3”
 - **System 2**
 - DOC
 - SCR-DPF
 - SCR
 - ASC
 - PGM2
 - 12”x6”
 - 12”x12”
 - 12”x10”
 - 12”x3”
 - **System 3**
 - dCSC™ Technology
 - SCR-DPF
 - SCR
 - ASC
 - PGM2
 - 12”x6”
 - 12”x12”
 - 12”x10”
 - 12”x3”

- **Focus:**
 - NOx reduction
 - NH₃ slip
 - N₂O formation (limited systems)

- **Design flow:**
 - DOC
 - SCR-DPF/CSF
 - SCR
 - ASC

Max SV: 150k/hr 75k/hr 90k/hr 300k/hr

B. Sukumar, et al., 2014 CLEERS
HD-FTP data used for simulation purpose

Engine out data

![Graph showing temperature and NOx concentration over time]

- Average Temp: 219°C
- NOx: 8.78 g/kwhr

B. Sukumar, et al., 2014 CLEERS
The system with the dCSC™ technology clearly shows advantages, mainly due to low temperature NOx reduction.

System1:
DOC+CSF+SCR+ASC

System2:
DOC+SCR-DPF +SCR+ASC

System3:
dCSC™ +SCR-DPF +SCR+ASC

<table>
<thead>
<tr>
<th></th>
<th>NOx (g/kwhr)</th>
<th>N₂O (g/kwhr)</th>
<th>NOx Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>System1</td>
<td>0.91</td>
<td>0.26</td>
<td>89.6%</td>
</tr>
<tr>
<td>System2</td>
<td>0.81</td>
<td>0.34</td>
<td>90.8%</td>
</tr>
<tr>
<td>System3</td>
<td>0.40</td>
<td>Not modeled</td>
<td>95.4%</td>
</tr>
</tbody>
</table>

Very low NOx levels

B. Sukumar, et al., 2014 CLEERS
Summary

- Low temperature emission control is a major challenge
 - Control of cold-start emissions is crucial to meet the future stringent emission regulations
 - Fuel economy and GHG legislation lead to lower exhaust temperatures

- Zeolite supported Pd catalysts exhibit high NOx/HC storage capacity with high trapping efficiency at low temperatures
 - Pd at the exchange sites can adsorb NO directly
 - Zeolite structures affect both the NO storage and release profiles
 - Catalysts show good tolerance to sulfur poisoning

- Fully formulated catalysts show promising results on vehicle testing

- Modeling study is instrumental in system design