CLEERS 2016 - Panel discussion

Meeting Tier 3 and the potential future impact of on-board emissions measurements and real-world/on-road emissions standards

Matti Maricq

Chemical Engineering, Research & Advanced Engineering Ford Motor Company

Research and Advanced Engineering

Meeting Tier 3 measurement requirements: An emissions testing point of view

greenhouse gas cap

							V
fleet average	Tier	Bin	NMOG	NOx	PM	НСНО	N2O
	2	5	90	70	10	18	
	2	3	55	30	10	11	
	2	2	10	20	10	4	
fleet average			NMOG + NOx				
	3	30	30		3	4	10
	3	20	20		3	4	
(from DieselNet)							

• Emissions standards are significantly lower than Tier 2

- New instruments are required; e.g. QCL, partial flow diluters
- Measurement accuracy more critical to engineering decisions

New instrumentation in emissions test cells

- Quantum cascade laser to measure N2O
- INNOVA to measure ethanol
- FTIR to measure NMOG & Formaldehyde
- Micro soot sensor to measure soot
- Partial flow diluter for improved gravimetric PM mass
- Solid particle counter to support EU PM standard
- Many of these, while commercially available, are still development projects in terms of integrating them into light duty chassis dynamometer cells (e.g. QCL, FTIR, PFD)
- Little user experience in performance and maintenance
- Getting these to provide reliable data for development and certification of Tier 3 vehicles remains a major challenge

PEMS work at Ford

Ford PEMS activities:

- □ On-board FTIR 1990's
- □ PREVIEW 2000 2004
- Joint work on SEMTECH with Sensors 2004 – 2008

Purpose

- Understand differences
 between real world and lab
- Investigate vehicle operating conditions not seen in dynamometer testing

PEMS – advantages & disadvantages

- Advantages record emissions under true driving conditions
 - Wide range of speed and acceleration
 - Variety of traffic situations
 - Different driver styles
- Disadvantages
 - Measurement accuracy less than in test cells
 - Non-reproducible test conditions
 - Difficult to test aftertreatment efficiency (pre post measurements)

PEMS or PAMS?

- PEMS = portable emissions measurement system
- PAMS = portable activity monitoring system
- Vehicle doesn't know that it's being run on the road or dynamometer (ambient temperature, pressure are exceptions)
- Vehicle responds to the sequence of speed load demands determined by its characteristics (size, weight) and the driver
- Real world trips often analyzed in terms of VSP bins (vehicle specific power), e.g., Liu and Frey, Environ. Sci. Technol. 2015
- PAMS can be used to compare drive cycles used for vehicle testing to real world driving patterns

Impact of real world testing?

- In EU probably yes
 - But not because testing is in real world
 - NEDC cycle is unrepresentative
 - □ A more realistic lab test cycle would likely have same impact
- In US probably no
 - US emissions tests includes US06 drive cycle more aggressive than real world
 - Real world data shows Tier 2 having desired impact in real world – i.e., lower NOx, HCs, CO (Liu & Frey 2015)

Any test is only as good as its design. Real world testing covers more scenarios but with less emissions accuracy and little repeatability. A good dynamometer test can cover the needed scenarios, but allow higher quality emissions measurements.