USDRIVE and Advanced Engine Crosscut Teams: Roadmaps and Protocols

USDRIVE Low Temperature Aftertreatment Team (sub-group of the Advanced Combustion and Emission Control Tech Team)

> Craig DiMaggio (FCA) Joe Theis (Ford) Wei Li, Se-Oh (GM) Jim Parks, Josh Pihl (ORNL) Ken Rappé, Mark Stewart (PNNL) Galen Fisher (UMich) Ken Howden (DOE)

USDRIVE and 21st Century Truck are two major Government-Industry Partnerships in Transportation

The Advanced Combustion and Emission Control Tech Team is relevant to emissions control

CLEERS is part of the Advanced Engine Crosscut Team (USDRIVE and 21st Century Truck)

<u>CLEERS</u> = <u>C</u>rosscut <u>L</u>ean (/<u>L</u>ow-temperature) <u>E</u>xhaust <u>E</u>missions <u>R</u>eduction <u>S</u>imulations

Important Partnership Documents for CLEERS Community

Roadmap 2014 LTAT Technical Path Forward (Protocol Intent)

- Primary focus is inception stage material R&D
 - Accelerate the pace of development of appropriate catalyst technologies
 - Quickly "weed-out" inappropriate technologies early in development
- Verification and sharing of results across the technical community

2015 **CLEERS** poster

An update on

"round robin"

The Advanced Combustion and Emission Control (ACEC) Technical Team

Low Temperature Aftertreatment (LTAT) working group

Including representatives from:

- FCA, Ford, GM, ORNL, PNNL, & DOE

Why

- Harmonize aftertreatment direction with emerging combustion strategies
- ≻ Assist DOE and USDRIVE in evaluation & management of projects
- ۶ A pathway for comparative evaluation and benchmarking
- ۶ Accelerate pace of catalyst innovation by maximizing value and impact of reported data

AFTERTREATMENT PROTOCOLS FOR CATALYST CHARACTERIZATION AND PERFORMANCE EVALUATION

Consistent and realistic standardized catalyst test procedures that sufficiently capture a catalyst technology's performance capability

- Solely intended as guidelines for sharing results of research with the technical community
- Meant to be broadly shared in public forum to evaluate and benchmark performance
- NOT meant to replace or dictate individual research institute protocols

Aspirations

- General community consensus
- Consistent with anticipated ≻ technologies
- Reproducible, adaptable in various labs ≻
- Be practical and have utility
- Literature citations

Protocol Structure

Protocol Considerations

Additional protocols will be generated as needed based on technology area

Round Robin Testing is Hard

CO Conversion 2004 DOE Crosscut Team Presentation CO Conversion: De-greened Reference LNT LNT Catalyst: Round Robin Testing at Six Labs Data provided by Ford Conversion (%) **HC Conversion** HC Conversion: De-greened Reference LNT Production LNT HC Conversion (%) 00 00 09 00 00 00 Five catalyst supplier labs Inlet Gas Temperature (°C) **OEM** lab **NOx Conversion** NOx Conversion: De-greened Reference LNT Inlet Gas Temperature (°C) 70 گ Summary For now ŏ₃₀ ▶ Published data can't be compared! Future Inlet Gas Temperature (°C)

▶ Need repeatable tests with adequate precision

- ▲ Avoid duplication of efforts
- ▲ Enable analysis based on published data

Round Robin Testing The Devil is in the Details

USDRIVE Low Temperature Oxidation Catalyst Test Protocol cleers.org/acec-lowt

Consistent and Realistic Standardized Catalyst Test Procedures ...

- General community consensus
- Consistent with anticipated technologies
- Reproducible, adaptable in various labs
- Be practical and have utility
- To have utility, must be validated

Protocol Structure

Low Temperature Oxidation Catalyst Test Protocol Round Robin Testing

Constant components	S-GDI	CDC		L-GDI	LTC-G	LTC-D
[O ₂]	0.74%	12%		9%	12%	12%
[H ₂ O]	13%	6%		8%	6%	6%
[CO ₂]	13%	6%		8%	6%	6%
[H ₂]	1670 ppm	100 ppm		670 ppm	670 ppm	400 ppm
Variable components	all in [ppm]					
[CO]	5000	500		2000	2000	2000
[NO]	1000	200		500	100	100
	Hydrocarbon – [ppm] on C ₁ basis**					
Total [HC]	3000	1400		3000	3000	3000
[C ₂ H ₄]	700 (1050)	500 (778)		700 (1050)	700 (1050)	500 (1667)
[C₃H ₆]	1000 (1500)	300 (467)		1000 (1500)	1000 (1500)	300 (1000)
[C₃H ₈]	300 (450)	100 (155)		300 (450)	300 (450)	100 (333)
[i-C ₈ H ₁₈]	1000 (0)	-		1000 (0)	1000 (0)	-
[n-C ₁₂ H ₂₆]	-	500 (0)		-	-	2100 (0)

Production DOC

Tested by Ford, GM, ORNL, PNNL

Cores from same DOC brick, separate samples tested at each facility

Each Facility

- 1. De-greened \rightarrow Activity Testing
- 2. Aged \rightarrow Activity Testing

TARGET ~90% agreement of T50 and T90 results (i.e., standard deviation <10%)

How Did We Do?

- Raw data generated as <u>concentration vs. temperature</u>
 - Converted to <u>conversion vs. temperature</u> for identification of T50s and T90s
- **Focus**: reproducibility of light-off chemistry, lab to lab results
- <u>Detailed</u> catalyst chemistry out of scope for purposes of RR
- HC blend shows good representation of low & high temperature activity

[ppm] shown instead of conversion for simplicity

Some spread in data expected and unavoidable

- Different labs with unique ...
 - furnace(s) size/length
 - exact catalyst placement
 - thermocouple size/length
 - analytical method development

Although detailed chemistry out of scope, catalyst *behavior* reproduces well

Summary and Take-Aways CDC Protocol Round Robin Testing

- Oxidation catalyst protocol works !!
 - Round robin testing complete
 - >90% agreement between four (4) OEM and NL labs
 - Some consistent differences we can understand better
- Need to improve catalyst aging consistency
 - Could use your help in how to standardize thermal environment during aging
- Protocols can be found on the CLEERS website
 - cleers.org/acec-lowt
 - Feedback is greatly appreciated
- Storage & Release protocol complete, currently under review
 - Will soon be posted on CLEERS website for user feedback
- Currently beginning development of TWC test protocol

