

GENERAL MOTORS

EMISSION BENEFITS AND LIMITATIONS OF PASSIVE HYDROCARBON ADSORBER TECHNOLOGIES

Michelle H. Wiebenga, Se H. Oh and Gongshin Qi General Motors Research and Development, Warren, MI 48092

> CLEERS 2016 April 6th, 2016 Contact: michelle.wiebenga@gm.com

OVERVIEW

- Background Passive HC Adsorbers
- Methods Establishing Testing Protocol
 - HC selection
 - Reactor design
 - Sample information
- Results & Discussion
 - Controlling various HCs
 - Aging effects
 - Space velocity and Pd loading

BACKGROUND - PASSIVE HC ADSORBER CATALYSTS

Ø As emission standards tighten, cold start emissions are the major contributor
Ø Low-temperature (< 150°C) emission control is critical à STORAGE

Desired Characteristics:

- Ø Ability to store high concentrations of HCs during engine cold-start
- Ø Ability to effectively convert (oxidize) stored HCs as they are released
- Ø Good thermal durability

THREE WAY CATALYST HYDROCARBON LIGHT-OFF

HC ADSORBER FUNCTION - IDEAL

HC ADSORBER FUNCTION - REALITY

SIMULATED EXHAUST HYDROCARBON SELECTION

- Hydrocarbons common to gasoline exhaust:
 - Shorter chain *olefins* (C_2-C_6)
 - *i-pentane* is the major C₅ paraffin
 - *i-octane* is the major C₈ paraffin
 - Major aromatic components are C₇-C₉
- The concentration of normal paraffins is typically low

REACTOR SYSTEM

HC ADSORBER SAMPLES AND AGING

	HC Adsorber	Pd:Rh (g/ft³)	50h/800°C	50h/850°C	50h/900°C
	A-10	10:2	Х		
⇒	A-50	50:2	Х	Х	Х
	A-100	100:2	X		
	B-50	48:2	X		
	B-70	68:2	X	Х	X
	B-100	98:2	Х		
	in focus			X = Tes	ted
a c	hia atud				
l	IIIS SWA				

Aging performed in lab reactor with L/R cycling - 5s 3% CO, 5s 3% O₂; N₂ all other times; always with 10% H₂O, 10% CO₂

Burner Aging Cycle

- Two different passive HC adsorber technologies (each with varied PGM loadings)
- Three different aging temps: 800, 850, 900°C

EXAMPLE RUN - SAMPLE A-50, 800°C AGED

Note: No CO₂ in feed so that it could be used for carbon balance; 2300 ppm C1 HC during Ads.

ADSORPTION PHASE

- TWC case comparable to empty reactor à no adsorption
- Adsorption of HC is real, not artifact of valve switching
- Case without adsorption integrated to determine total HC exposure

	% Storage Efficiency							
	C3H6	i-C5H12						
A-50 800°C	38%	100%	100%	84%				

DESORPTION AND OXIDATION PHASE

- TWC stores no HC
- Order of release: i-pentane, i-octane, m-xylene (No propylene release)
- m-xylene is almost entirely oxidized here à cannot determine true desorption temperature of m-xylene

PINPOINTING DESORPTION TEMP – TESTING IN ABSENCE OF O_2

Both aged 50h/800°C/10%H₂O

- Peak desorption temperatures appear lower due to oxidation
- A significant portion of m-xylene and smaller portion of ioctane are oxidized on the 800°C aged adsorber
- i-pentane desorbs well before light-off

EFFECT OF AGING ON DESORPTION TEMPERATURES – SAMPLE A-50

- After 900°C aging all desorption peaks shift to lower temperature (10-30°C shift)
- Desorption peak temperature of mxylene is 30°C lower

IMPACT OF AGING - SAMPLE A-50

- Propylene storage deteriorates after aging at 850°C or higher
- i-octane and m-xylene storage are maintained with aging, but desorption shifts to lower temperature
- Less i-pentane stored with aging and desorption shifts to lower temperature

EFFECT OF AGING ON ADSORPTION CAPACITY AND LIGHT-OFF TEMPERATURE – SAMPLE A-50

- 1. PRETREAT 30 min with $O_2 \& H_2O$
- 2. Cool RCTR to 75°C and stabilize feed in bypass
- 3. Switch feed over catalyst, 2h ADSORPTION at 75°C

Adsorption to Saturation – 800°C Aged

Sample A-50	Quantity Adsorbed (g/L)
800°C Aged	15.8
900°C Aged	15.4

Deactivation mechanisms at 900°C:

- Desorption peaks shift to lower temperature
- Oxidation (T-50) shifts to higher temperature
- Propylene storage capability is lost Total storage capacity is unaffected

OVERALL OXIDATION EFFICIENCY (% OF EXPOSED HC OXIDIZED) COMPARED TO ADSORBER B

* THC Oxidation Efficiency Calculated as Average of:							
(Exposed C1 HC - Released C1 HC),	(CO+CO ₂ Measured)						
(Exposed C1 HC)	(Exposed C1 HC)						

- ~45% of exposed HC are oxidized on A-50 aged at 800°C
- Adsorber B has significantly lower performance (30%)
- After 850°C both < 30%, after 900°C both < 10%
- For 800°C aged samples, significant differences in propylene and m-xylene performance (otherwise similar)

		% Storage	Efficiency		% Oxidation Efficiency of Stored HC					
	C3H6	m-C8H10	i-C8H18	i-C5H12	C3H6	<u>m-C8H10</u>	i-C8H18	i-C5H12		
A-50 800°C	38%	100%	100%	84%	100%	94%	6%	11%		
A-50 850°C	0%	100%	100%	71%	n/a	72%	0%	2%		
A-50 900°C	0%	100%	100%	62%	n/a	22%	4%	0%		
B-70 800°C	8%	100%	100%	76%	100%	74%	8%	1%		
B-70 850°C	8%	100%	100%	71%	100%	66%	3%	0%		
B-70 900°C	0%	96%	86%	45%	n/a	20%	0%	0%		

SPACE VELOCITY EFFECT - SAMPLE A-50

THC Oxidation Efficiency at 30k vs 60k h⁻¹

Full-size (30k h⁻¹) vs. Half-size (60k h⁻¹)

(Exposed C1 HC - Released C1 HC) (Cl)+CO. Measured)									
(Exposed C1 HC)	Exposed C1 HC)	% of Exposed HC Stored					% Oxidation Efficiency of Stored HC			
(Exposed OTTIO) (I		C3H6	m-C8H10	i-C8H18	i-C5H12	C3H6	m-C8H10	i-C8H18	i-C5H12	
	30,000 h-1	38%	100%	100%	84%	100%	94%	6%	11%	
All aged 50n/800°C/10%H ₂ O	60,000 h-1	24%	92%	85%	57%	100%	67%	2%	5%	
	60,000 h-1 (Blank in Front)	23%	92%	85%	56%	100%	76%	0%	5%	

- At 30k h-1 HC exposure is only 5% of the storage capacity (10% at 60k)
- Adsorption and oxidation rates are space velocity sensitive
- Longer sample may be able to re-adsorb HC downstream

PALLADIUM LOADING EFFECT

* THC Oxidation Efficiency Calculated as Average of: (Exposed C1 HC - Released C1 HC), (Exposed C1 HC) (CO+CO₂ Measured) (Exposed C1 HC)

All aged 50h/800°C/10%H₂O

- Increasing Pd loading of Sample A improves:
 - Propylene storage
 - M-xylene oxidation
- Effect of increased Pd is minor for Sample B

JU g/113 Pa	% Storage Efficiency					% Oxidation Efficiency of Stored HC					
		C3H6	m-C8H10	i-C8H18	i-C5H12	C3H6	n	n-C8H1	0	i-C8H18	i-C5H12
A-10		13%	100%	100%	78%	100%		84%		0%	5%
A-50		38%	100%	100%	84%	100%		94%		6%	11%
A-100		61%	100%	100%	80%	100%		100%		15%	8%
B-50		15%	100%	100%	73%	100%		84%		2%	3%
B-70		17%	100%	100%	79%	100%		74%		8%	14%
B-100		26%	100%	100%	78%	100%		88%		8%	18%

PROPYLENE STORAGE TRENDS - SAMPLE A

All aged 50h/800°C/10%H₂O

			% Storage	Efficiency	1	% Oxidation Efficiency of Stored HC				
	C3H6		m-C8H10 i-C8H18 i-C5H12		i-C5H12	C3H6	m-C8H10	i-C8H18	i-C5H12	
A-10	13%		100%	100%	78%	100%	84%	0%	5%	
A-50	38%		100%	100%	84%	100%	94%	6%	11%	
A-100	61%		100%	100%	80%	100%	100%	15%	8%	

- Relatively high storage of propylene on adsorber A (always completely oxidized)
- Propylene storage seems to be linked to Pd content

EFFECT OF NO - PROPYLENE VS. M-XYLENE

All aged 50h/800°C/10%H₂O

* THC Oxidation Efficiency Calculated as Average of: (Exposed C1 HC - Released C1 HC), (Exposed C1 HC) (CO+CO₂ Measured) (Exposed C1 HC)

	% of Exposed HC Sto	ored	% Oxidation Efficiency of Stored HC			
	C3H6 m-C8H10			m-C8H10		
0 ppm NO	69%	100%	100%	56%		
200 ppm NO	57%	100%	100%	89%		
500 ppm NO	38%	100%	100%	94%		

- As NO concentration increases:
 - Less C₃H₆ stores
 - More m-xylene is oxidized
 - Overall % C1 HC oxidized is constant
- NO may inhibit adsorption of propylene
- Less propylene desorbing allows more mxylene to be oxidized (similar T-50)

CONCLUSIONS

- Hydrocarbon make-up critical to overall HC adsorber performance
- Olefins and aromatics à controlled to some degree
- Alkanes à difficult to control
 - i-octane stores but releases before T-50
 - i-pentane stores <70% and releases well before T-50
- 900°C aging destroys performance of all adsorbers tested, but zeolite does not collapse
 - Total storage capacity is unaffected
 - Oxidation (T-50) shifts to higher temperature
 - Desorption peaks shift to lower temperatures
- Propylene storage appears to be linked to Pd sites

Controllable

Improvement Needed

GENERAL MOTORS

THANK YOU FOR YOUR ATTENTION!

Questions?

