EMISSION BENEFITS AND LIMITATIONS OF PASSIVE HYDROCARBON ADSORBER TECHNOLOGIES

Michelle H. Wiebenga, Se H. Oh and Gongshin Qi
General Motors Research and Development, Warren, MI 48092

CLEERS 2016 April 6th, 2016
Contact: michelle.wiebenga@gm.com
OVERVIEW

• Background – Passive HC Adsorbers
• Methods – Establishing Testing Protocol
 • HC selection
 • Reactor design
 • Sample information
• Results & Discussion
 • Controlling various HCs
 • Aging effects
 • Space velocity and Pd loading
BACKGROUND - PASSIVE HC ADSORBER CATALYSTS

- Ability to store high concentrations of HCs during engine cold-start
- Ability to effectively convert (oxidize) stored HCs as they are released
- Good thermal durability

Three-way catalyst coating

Typical HC adsorber coating

Desired Characteristics:

- Ability to store high concentrations of HCs during engine cold-start
- Ability to effectively convert (oxidize) stored HCs as they are released
- Good thermal durability

Source: Nissan, SAE Paper 2001-01-0892
THREE WAY CATALYST HYDROCARBON LIGHT-OFF

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>HC Concentration (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50°C</td>
<td>0</td>
</tr>
</tbody>
</table>

Inlet HC

HC Concentration

T-50 of TWC
50°C Inlet HC

Inlet HC Concentration

Store HC below TWC light-off Temp

Release HC above TWC light-off temp

IDEAL

Oxidize all stored HC
HC ADSORBER FUNCTION - REALITY

Temperature (°C)

HC Concentration (ppm)

Inlet HC

Partial storage of HC

Release HC below or near light-off temp

T-50 of TWC

HC Concentration

Oxidize some portion of stored HC
SIMULATED EXHAUST HYDROCARBON SELECTION

- Hydrocarbons common to gasoline exhaust:
 - Shorter chain olefins (C₂-C₆)
 - i-pentane is the major C₅ paraffin
 - i-octane is the major C₈ paraffin
 - Major aromatic components are C₇-C₉
- The concentration of normal paraffins is typically low
REACTOR SYSTEM

- Gaseous components fed via MFCs
- Liquid HC fed via Bronkhorst evaporator
- Feed was stabilized in bypass before switching over catalyst
- T_{in} and T_{out} measured in gas ~2mm from sample

[Diagram showing reactor system with reactant gas manifold, heated lines, core sample, and FTIR spectrometer]
HC ADSORBER SAMPLES AND AGING

Aging performed in lab reactor with L/R cycling - 5s 3% CO, 5s 3% O\textsubscript{2}; N\textsubscript{2} all other times; always with 10% H\textsubscript{2}O, 10% CO\textsubscript{2}

<table>
<thead>
<tr>
<th>HC Adsorber</th>
<th>Pd:Rh (g/ft3)</th>
<th>50h/800°C</th>
<th>50h/850°C</th>
<th>50h/900°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-10</td>
<td>10:2</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-50</td>
<td>50:2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>A-100</td>
<td>100:2</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-50</td>
<td>48:2</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-70</td>
<td>68:2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>B-100</td>
<td>98:2</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X = Tested

Main focus of this study

- Two different passive HC adsorber technologies (each with varied PGM loadings)
- Three different aging temps: 800, 850, 900°C
EXAMPLE RUN – SAMPLE A-50, 800°C AGED

1. Pretreat 30 min/500°C with O\textsubscript{2} & H\textsubscript{2}O
2. Stabilize feed in BYPASS
3. Switch feed over catalyst at 75°C – ADSORPTION
4. Cut off HC flow after 1 minute
5. Immediately set inlet gas temp to 500°C and begin ramping (~40 °C/min) – DESORPTION & OXIDATION

<table>
<thead>
<tr>
<th></th>
<th>PRETREAT.</th>
<th>ADS.</th>
<th>DES. & OX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>iso-pentane</td>
<td>0</td>
<td>70 ppm</td>
<td>0</td>
</tr>
<tr>
<td>iso-octane</td>
<td>0</td>
<td>50 ppm</td>
<td>0</td>
</tr>
<tr>
<td>m-xylene</td>
<td>0</td>
<td>100 ppm</td>
<td>0</td>
</tr>
<tr>
<td>propylene</td>
<td>0</td>
<td>250 ppm</td>
<td>0</td>
</tr>
<tr>
<td>NO</td>
<td>0</td>
<td>500 ppm</td>
<td>500 ppm</td>
</tr>
<tr>
<td>O\textsubscript{2}</td>
<td>10%</td>
<td>5610 ppm</td>
<td>5610 ppm</td>
</tr>
<tr>
<td>H\textsubscript{2}O</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Note: No CO\textsubscript{2} in feed so that it could be used for carbon balance; 2300 ppm C1 HC during Ads.
ADSORPTION PHASE

TWC - 800°C Aged

- **C₃H₆**
- **m-C₈H₁₀**
- **i-C₅H₁₂**
- **i-C₈H₁₈**

HC Adsorber A-50 - 800°C Aged

- **C₃H₆**
- **m-C₈H₁₀**
- **i-C₅H₁₂**
- **i-C₈H₁₈**

<table>
<thead>
<tr>
<th>% Storage Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₃H₆</td>
</tr>
<tr>
<td>A-50 800°C</td>
</tr>
</tbody>
</table>

- TWC case comparable to empty reactor † no adsorption
- Adsorption of HC is real, not artifact of valve switching
- Case without adsorption integrated to determine total HC exposure
DESORPTION AND OXIDATION PHASE

TWC - 800°C Aged

HC Adsorber A-50 - 800°C Aged

- TWC stores no HC
- Order of release: i-pentane, i-octane, m-xylene (No propylene release)
- m-xylene is almost entirely oxidized here ‡ cannot determine true desorption temperature of m-xylene
PINPOINTING DESORPTION TEMP – TESTING IN ABSENCE OF O₂

- Peak desorption temperatures appear lower due to oxidation
- A significant portion of m-xylene and smaller portion of i-octane are oxidized on the 800°C aged adsorber
- i-pentane desorbs well before light-off

Both aged 50h/800°C/10%H₂O
EFFECT OF AGING ON DESORPTION TEMPERATURES – SAMPLE A-50

After 900°C aging all desorption peaks shift to lower temperature (10-30°C shift)

Desorption peak temperature of m-xylene is 30°C lower
IMPACT OF AGING – SAMPLE A-50

Temperature Programmed Desorption/Oxidation

<table>
<thead>
<tr>
<th>% Storage Efficiency</th>
<th>% Oxidation Efficiency of Stored HC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C3H6</td>
</tr>
<tr>
<td>A-50 800°C</td>
<td>38%</td>
</tr>
<tr>
<td>A-50 850°C</td>
<td>0%</td>
</tr>
<tr>
<td>A-50 900°C</td>
<td>0%</td>
</tr>
</tbody>
</table>

- Propylene storage deteriorates after aging at 850°C or higher
- i-octane and m-xylene storage are maintained with aging, but desorption shifts to lower temperature
- Less i-pentane stored with aging and desorption shifts to lower temperature
EFFECT OF AGING ON ADSORPTION CAPACITY AND LIGHT-OFF TEMPERATURE – SAMPLE A-50

1. PRETREAT 30 min with \(\text{O}_2 \) & \(\text{H}_2\text{O} \)
2. Cool RCTR to 75°C and stabilize feed in bypass
3. Switch feed over catalyst, 2h ADSORPTION at 75°C

Adsorption to Saturation – 800°C Aged

<table>
<thead>
<tr>
<th>Sample A-50</th>
<th>Quantity Adsorbed (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>800°C Aged</td>
<td>15.8</td>
</tr>
<tr>
<td>900°C Aged</td>
<td>15.4</td>
</tr>
</tbody>
</table>

Deactivation mechanisms at 900°C:
- Desorption peaks shift to lower temperature
- Oxidation (T-50) shifts to higher temperature
- Propylene storage capability is lost
- Total storage capacity is unaffected
OVERALL OXIDATION EFFICIENCY (% OF EXPOSED HC OXIDIZED) COMPARED TO ADSORBER B

* THC Oxidation Efficiency Calculated as Average of: (Exposed C1 HC - Released C1 HC), (CO+CO₂ Measured) / (Exposed C1 HC)

- ~45% of exposed HC are oxidized on A-50 aged at 800°C
- Adsorber B has significantly lower performance (30%)
- After 850°C both < 30%, after 900°C both < 10%
- For 800°C aged samples, significant differences in propylene and m-xylene performance (otherwise similar)
SPACE VELOCITY EFFECT – SAMPLE A-50

THC Oxidation Efficiency at 30k vs 60k h⁻¹

* THC Oxidation Efficiency Calculated as Average of:
 (Exposed C1 HC - Released C1 HC), \((\text{CO+CO}_2\text{ Measured})\)
 (Exposed C1 HC)

<table>
<thead>
<tr>
<th></th>
<th>C₃H₆</th>
<th>m-C₈H₁₀</th>
<th>i-C₈H₁₈</th>
<th>i-C₅H₁₂</th>
<th>% of Exposed HC Stored</th>
<th>% Oxidation Efficiency of Stored HC</th>
</tr>
</thead>
<tbody>
<tr>
<td>30,000 h⁻¹</td>
<td>38%</td>
<td>100%</td>
<td>100%</td>
<td>84%</td>
<td>100%</td>
<td>94%</td>
</tr>
<tr>
<td>60,000 h⁻¹</td>
<td>24%</td>
<td>92%</td>
<td>85%</td>
<td>57%</td>
<td>100%</td>
<td>67%</td>
</tr>
<tr>
<td>60,000 h⁻¹ (Blank in Front)</td>
<td>23%</td>
<td>92%</td>
<td>85%</td>
<td>56%</td>
<td>100%</td>
<td>76%</td>
</tr>
</tbody>
</table>

All aged 50h/800°C/10%H₂O

- At 30k h⁻¹ HC exposure is only 5% of the storage capacity (10% at 60k)
- Adsorption and oxidation rates are space velocity sensitive
- Longer sample may be able to re-adsorb HC downstream
PALLADIUM LOADING EFFECT

THC Oxidation Efficiency (C1 Basis)

- Increasing Pd loading of Sample A improves:
 - Propylene storage
 - M-xylene oxidation
- Effect of increased Pd is minor for Sample B

* THC Oxidation Efficiency Calculated as Average of:
 (Exposed C1 HC - Released C1 HC), (CO+CO₂ Measured)
 (Exposed C1 HC)

All aged 50h/800°C/10%H₂O

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pd Loading (g/ft³)</th>
<th>% Storage Efficiency</th>
<th>% Oxidation Efficiency of Stored HC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C₃H₆</td>
<td>m-C₈H₁₀</td>
</tr>
<tr>
<td>A-10</td>
<td>10</td>
<td>13%</td>
<td>100%</td>
</tr>
<tr>
<td>A-50</td>
<td>50</td>
<td>38%</td>
<td>100%</td>
</tr>
<tr>
<td>A-100</td>
<td>70</td>
<td>61%</td>
<td>100%</td>
</tr>
<tr>
<td>B-50</td>
<td>100</td>
<td>17%</td>
<td>100%</td>
</tr>
<tr>
<td>B-100</td>
<td>20</td>
<td>26%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Relatively high storage of propylene on adsorber A (always completely oxidized)
Propylene storage seems to be linked to Pd content
EFFECT OF NO - PROPYLENE VS. M-XYLENE

THC Oxidation Efficiency (C1 Basis)

<table>
<thead>
<tr>
<th>NO Concentration</th>
<th>% of Exposed HC Stored</th>
<th>% Oxidation Efficiency of Stored HC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C3H6</td>
<td>m-C8H10</td>
</tr>
<tr>
<td>0 ppm NO</td>
<td>69%</td>
<td>100%</td>
</tr>
<tr>
<td>200 ppm NO</td>
<td>57%</td>
<td>100%</td>
</tr>
<tr>
<td>500 ppm NO</td>
<td>38%</td>
<td>100%</td>
</tr>
</tbody>
</table>

- As NO concentration increases:
 - Less C₃H₆ stores
 - More m-xylene is oxidized
 - Overall % C1 HC oxidized is constant
- NO may inhibit adsorption of propylene
- Less propylene desorbing allows more m-xylene to be oxidized (similar T-50)

* THC Oxidation Efficiency Calculated as Average of:
 (Exposed C1 HC - Released C1 HC), (CO+CO₂ Measured)
 (Exposed C1 HC) (Exposed C1 HC)

* All aged 50h/800°C/10%H₂O
CONCLUSIONS

- Hydrocarbon make-up critical to overall HC adsorber performance
- Olefins and aromatics ‡ controlled to some degree
- Alkanes ‡ difficult to control
 - i-octane stores but releases before T-50
 - i-pentane stores <70% and releases well before T-50
- 900°C aging destroys performance of all adsorbers tested, but zeolite does not collapse
 - Total storage capacity is unaffected
 - Oxidation (T-50) shifts to higher temperature
 - Desorption peaks shift to lower temperatures
- Propylene storage appears to be linked to Pd sites

Controllable

Improvement Needed

Durability
≥ 850°C
THANK YOU FOR YOUR ATTENTION!

Questions?