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OVERVIEW

» Background — Passive HC Adsorbers
 Methods - Establishing Testing Protocol
» HC selection
* Reactor design
o Sample information
* Results & Discussion
o Controlling various HCs
o Aging effects
» Space velocity and Pd loading



BACKGROUND - PASSIVE HC ADSORBER CATALYSTS

@ As emission standards tighten, cold start emissions are the major contributor
@ Low-temperature (< 150°C) emission control is critical & STORAGE

Three-way catalyst coating Typical HC adsorber coating
Zeolite material
(HC storage/release)

Al,O5; washcoat

containing PGM TWC Layer
(HC oxidation)

Cordierite substrate Cordierite substrate

Source: Nissan, SAE Paper 2001-01-0892

Desired Characteristics:

@ Ability to store high concentrations of HCs during engine cold-start
@ Ability to effectively convert (oxidize) stored HCs as they are released
@ Good thermal durability




THREE WAY CATALYST HYDROCARBON LIGHT-OFF
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HC ADSORBER FUNCTION - IDEAL
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HC ADSORBER FUNCTION - REALITY
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SIMULATED EXHAUST HYDROCARBON SELECTION

e Hydrocarbons common to gasoline propylene Xy
exhaust:
 Shorter chain olefins (C,-Cy) .
) . ] . I-pentane
 i-pentane is the major C; paraffin )\/

 [-octane is the major C4 paraffin

° |\/|ajor aromatic components are ></L
i-octane
C7'C9

e The concentration of normal paraffins CH

Is typically low
m-xylene
CHy



REACTOR SYSTEM

Core
ey
System Flow Heated Lines (150°C)
C,H,—<—G
I{SH"’_M_@ H,0 — 4 Liquid HC
= —I iquid HC:
"o : Tou if H,, &
Dz_m_@_ % 8 18
N, —>a—Ce)— ! Wil
2
[
Gaseous components fed via MFCs Bypass : Furnace
Liquid HC fed via Bronkhorst [ Quartz
evaporator : Reactor Tube
Feed was stabilized in bypass before e l— = {;%;
switching over catalyst SPECTROMETER § Tin

T,,and T,,,measured in gas ~2mm
from sample



HC ADSORBER SAMPLES AND AGING

Aging performed in lab reactor with L/R
cycling - 5s 3% CO, 5s 3% O,; N, all other
times; always with 10%06 H,0, 10%b6 CO,

50h/800°C 50h/850°C 50h/900°C Bumer Aging Cycle

HC Pd:Rh

Adsorber (g/ft3)

A-10 10:2 X Lorbie — i o
| A-50 50:2 X X

A-100 100:2 X

B-50 48:2 X

B-70 68:2 X X §

B-100 98:2 X
- X = Tested pors ]
Main focus
of this study "
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« Two different passive HC adsorber technologies (each with varied PGM loadings)
* Three different aging temps: 800, 850,900°C




EXAMPLE RUN — SAMPLE A-50, 800°C AGED

1. Pretreat 30 min/500°C with O,
& H,0

2. Stabilize feed in BYPASS

3. Switch feed over catalyst at
75°C — ADSORPTION

4. Cut off HC flow after 1 minute

5. Immediately set inlet gas temp
to 500°C and begin
ramping(~40 °C/min) —
DESORPTION & OXIDATION

PRETREAT.| ADS. | DES. & OX.

Iso-pentane 0 70 ppm 0

iIso-octane 0 50 ppm 0

m-xylene 0 100 ppm 0

propylene 0 250 ppm 0

NO 0 500 ppm 500 ppm

O, 10% |5610 ppm| 5610 ppm

H20 5% 50 50

Note: No CO, in feed so that it could be used for carbon balance; 2300 ppm C1 HC during Ads.
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ADSORPTION PHASE
TWC - 800°C Aged

HC Adsorber A-50 - 800°C Aged

300 016 300 - 016
20 ADSORPTION
C3Hg ADSORPTION 014 g 014
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- 002 @ | 002
- 0 0 T — - 0
22 23 24 25
TOS [min) TOS (min)
» TWHC case comparable to empty reactor & no adsorption % Storage Efficiency
» Adsorption of HC is real, not artifact of valve switching C3H6 | m-C8H10| i-C8H18 | I-CSH12
« Case without adsorption integrated to determine total [A-50800C SE% | 100% | 100% | 4%

HC exposure
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DESORPTION AND OXIDATION PHASE

TWC - 800°C Aged HC Adsorber A-50 - 800°C Aged
80 80
{1 71 s S
e & 1 I | T
E E
350 ________________________________________________ E
5 5
gm ““““““““““““““““““ (S5 g
g%y =C5H5 ] £
L 1-CgHqg-- “
10 ---------------------------------m'-ngile--
WA A AT AN T T L A
(] P ket it et st st
75 100 125 150 175 200 225 250 275 300
Inlet Temp (C) Inlet Temp (C)
% Storage Efficiency % Oxidation Efficiency of Stored HC
C3H6 | m-C8H10| i-C8H18 | i-C5H12 C3H6 | m-C8H10 [ i-C8H18 | i-C5H12
A-50800°C 38% 100% 100% 84% 100% 94% 6% 11%

e TWCstoresno HC

» Order of release: i-pentane, i-octane, m-xylene (No propylene release)

* m-xylene is almost entirely oxidized here & cannot determine true desorption
temperature of m-xylene



PINPOINTING DESORPTION TEMP — TESTING IN
ABSENCE OF O,

Full Feed No NO & O, in Feed * Peak desorption
80 80 temperatures
L et L appear lower due to

23
©
o
o

oxidation
* Asignificant portion
of m-xylene and

124
(=]
o
o

Concentration {ppm)
F-%
<
Concentration {(ppm)
ES
o

30 | 30 smaller portion of i-
20 20 | octane are oxidized
10 | 10 on the 800°C aged
0 0‘55 100 1é 150 1?% 2od 225 250 275 300 adsorber
Inlet Temp (C) Inlet Temp (C) * i-pentane desorbs
- CBH12 —-.C8H18 —m-C8H10 e (-G EH12 e (-CBH 18 e -CBH 10 We” before Ilght_oﬁ

Both aged 50h/800°C/10%H,0
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EFFECT OF AGING ON DESORPTION TEMPERATURES —
SAMPLE A-50

800°C Aged - No NO & O, 900°C Aged - No NO & O,

o6
L]
]
<

» After 900°C aging all
desorption peaks
shift to lower
temperature (10-
30°C shift)

» Desorption peak
temperature of m-
xylene is 30°C lower
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IMPACT OF AGING — SAMPLE A-50

Temperature Programmed Desorption/Oxidation

a0
. T iCsf S| m-CgHiq
—ar l ML b lonno . Lo Lo . b~ | | =60} et e e
S AN 91T Bl °C...
I | I EE Ly g 0
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80 100 120 140 160 180 200 80 100 120 440 180 480 200 220 240 80 100 120 140 160 150 200 220 240 260 280 300
Inlet Temp [C) Inlet Temp (C} Inlet Temp (C)
% Storage Efficiency % Oxidation Efficiency of Stored HC
C3H6 m-C8H10 | i-C8H18 | i-C5H12 C3H6 m-C8H10 | i-C8H18 | i-C5H12
A-50 800°C 38% 100% 100% 84% 100% 94% 6% 11%
A-50850°C 0% 100% 100% 71% n/a 2% 0% 2%
A-50900°C 0% 100% 100% 62% n/a 22% 4% 0%

* Propylene storage deteriorates after aging at 850°C or higher

» |-octane and m-xylene storage are maintained with aging, but desorption shifts to lower
temperature

» Less i-pentane stored with aging and desorption shifts to lower temperature



EFFECT OF AGING ON ADSORPTION CAPACITY AND LIGHT-
OFF TEMPERATURE — SAMPLE A-50

1. PRETREAT 30 min with O, & H,O
2. Cool RCTR to 75°C and stabilize feed in bypass

3. Switch feed over catalyst, 2h ADSORPTION at 75°C

Adsorption to Saturation —800°C Aged

0.18

300

Concentration (ppm)

CO, Generation during TPD
(after 1 min Adsorption)

) 0.14 Sample Quantity
=7 L. | ABO Adsorbed (g/L)
EE‘”' o1 § 800°C Aged 15.8
5150 mg 900°C Aged 15.4 100 200 mlﬁfmﬂ;{.‘:}l 40 500
== | .. Deactivation mechanisms at 900°C:
? oz » Desorption peaks shift to lower temperature
o 0 * Oxidation (T-50) shifts to higher temperature
Switch through  ™* ™ Turn off HC * Propylene storage capability is lost

reactor Total storage capacity is unaffected
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OVERALL OXIDATION EFFICIENCY (2% OF EXPOSED
HC OXIDIZED) COMPARED TO ADSORBER B

THC Oxidation Efficiency (C1 Basis)*

70%

%)

THC Oxidation Efficiency (

2800°C Aging 850°C Aging

* THC Oxidation Efficiency Calculated as Average of:

(Exposed C1 HC - Released C1 HC),

(CO+CO, Measured)

(Exposed C1 HC)

(Exposed C1 HC)

900°C Aging

~45% of exposed HC are oxidized on A-
50 aged at 800°C

Adsorber B has significantly lower
performance (30%)

After 850°C both < 30%, after 900°C
both < 10%

For 800°C aged samples, significant
differences in propylene and m-xylene
performance (otherwise similar)

% Storage Efficiency % Oxidation Efficiency of Stored HC
C3H6_ | m-C8H10| i-C8H18 | i-C5H12 | C3H6 | m-C8H10 | i-C8H18 | i-C5H12
A50800°C || 38% || 100w | 100w [ 8w o || oo ]| % 11%
A-50850°C 0% 100% | 100% | 71% n/a 72% % 2%
A-50900°C 0% 100% | 100% | 62w n/a 220 4% 0%
B7o800C || 8% || 100w | 1000 | 76% 100% || 7% || s 1%
B-70850°C 8% 100% | 100% | 71% 100% 6% % %
B-70 900°C 0% 96% 86% 450 n/a 20% 0% 0%
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SPACE VELOCITY EFFECT — SAMPLE A-50

THC Oxidation Efficiency at 30k vs 60k h-1

=

50%

30%
20%
10%

30,000 h-1 60,000 h-1 60,000 h-1
(Blank in Front)

S
=

=]
&

Total Oxidation Efficiency

* THC Oxidation Efficiency Calculated as Average of:
(Exposed C1 HC - Released C1 HC), (CO+CO, Measured)

(Exposed C1 HC) (Exposed C1 HC)

Toutier
S . $
o e " Full-size (30k h1) vs.
a - @ Half-size (60k h1)
g an
SR

Tincer

% of Exposed HC Stored % Oxidation Efficiency of Stored HC

All aged 50h/800°C/10%H,0  [0000n1

C3H6 m-C8H10 i-C8H18 | i-C5H12 C3H6 m-C8H10 | i-C8H18 i-C5H12
30,000h-1 38% 100% 100% 84% 100% 94% 6% 11%
24% 92% 85% 57% 100% 67% 2% 5%
60,000 h-1 (Blank in Front) 23% 92% 85% 56% 100% 76% 0% 5%

At 30k h-1 HC exposure is only 5% of the storage capacity (10% at 60k)
Adsorption and oxidation rates are space velocity sensitive
Longer sample may be able to re-adsorb HC downstream
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PALLADIUM LOADING EFFECT

THC Oxidation Efficiency (C1 Basis)*

3

2

Sample B

3

& E¢

THC Oxidation Efficiency (%)

----------------------- Sample A [~

0%

10g/ft3Pd 50g/fi3Pd  70g/ft3Pd 100 g/ft3 Pd

* THC Oxidation Efficiency Calculated as Average of:
(Exposed C1 HC - Released C1 HC), (CO+CO, Measured)
(Exposed C1 HC) (Exposed C1 HC)

All aged 50h/800°C/10%H,0

Increasing Pd loading of Sample A
Improves:

* Propylene storage

« M-xylene oxidation

Effect of increased Pd is minor for

Sample B

% Storage Efficiency

% Oxidation Efficiency of Stored HC

C3H6 [m-C8H10| i-C8H18 | i-C5H12 | C3H6 m-C8H10 i-C8H18 | i-C5H12
A-10 13% 100% 100% 78% 100% 84% 0% 5%
A-50 38% 100% 100% 84% 100% 94% 6% 11%
A-100 61% 100% 100% 80% 100% 100% 15% 8%
B-50 15% 100% 100% 3% 100% 84% 2% 3%
B-70 17% 100% 100% 79% 100% 74% 8% 14%
B-100 26% 100% 100% 78% 100% 88% 8% 18%
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PROPYLENE STORAGE TRENDS — SAMPLE A

Concentration (ppm)

Adsorption of
Propylene

- N
o
o

L

(3]
o
L

All aged 50h/800°C/10%H,0

% Storage Efficiency

% Oxidation Efficiency of Stored HC

C3H6 |m-C8H10]| i-C8H18 | i-C5H12 | C3H6 |[m-C8H10( i-C8H18 | i-C5H12
A-10 13% 100% 100% 78% 100% 84% 0% S%
A-50 38% 100% 100% 84% 100% 94% 6% 11%
A-100 61% 100% 100% 80% 100% 100% 15% 8%

TOS (min)

Relatively high storage of propylene on adsorber A (always completely

oxidized)

Propylene storage seems to be linked to Pd content
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EFFECT OF NO - PROPYLENE VS. M-XYLENE

THC Oxidation Efficiency (C1 Basis)*

200 ppm NO

60%

: § 8 8¢

Total Oxidation Efficiency (%6)

=]
S

500 ppm NO

All aged 50h/800°C/10%H,0

* THC Oxidation Efficiency Calculated as Average of:

(Exposed C1 HC - Released C1 HC), (CO+CO, Measured)

(Exposed C1 HC)

(Exposed C1 HC)

% of Exposed HC Stored % Oxidation Efficiency of Stored HC
C3H6 m-C8H10 C3H6 m-C8H10
0ppm NO 69% 100% 100% 56%
200 ppm NO 57% 100% 100% 89%
500 ppm NO 38% 100% 100% 94%

As NO concentration increases:
Less C;Hg stores
More m-xylene is oxidized
Overall % C1 HC oxidized is constant
NO may inhibit adsorption of propylene

Less propylene desorbing allows more m-
xylene to be oxidized (similar T-50)
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CONCLUSIONS

Hydrocarbon make-up critical to overall HC adsorber
performance
Olefins and aromatics & controlled to some degree
Alkanes a difficult to control

» |-octane stores but releases before T-50

* I-pentane stores <70% and releases well before

T-50

900°C aging destroys performance of all adsorbers
tested, but zeolite does not collapse

» Total storage capacity is unaffected

» Oxidation (T-50) shifts to higher temperature

» Desorption peaks shift to lower temperatures
Propylene storage appears to be linked to Pd sites

Controllable

CHy
PN

CHz

Improvement Needed

)v><)\

Durability
= 850°C
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