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OVERVIEW

• Background – Passive HC Adsorbers
• Methods – Establishing Testing Protocol

• HC selection
• Reactor design
• Sample information

• Results & Discussion
• Controlling various HCs
• Aging effects
• Space velocity and Pd loading
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BACKGROUND - PASSIVE HC ADSORBER CATALYSTS

Ø Ability to store high concentrations of HCs during engine cold-start
Ø Ability to effectively convert (oxidize) stored HCs as they are released
Ø Good thermal durability

Cordierite substrate

Al2O3 washcoat
containing PGM

Three-way catalyst coating

Desired Characteristics:
Source: Nissan, SAE Paper 2001-01-0892

TWC Layer
(HC oxidation)

Zeolite material
(HC storage/release)

Typical HC adsorber coating

Cordierite substrate

Ø As emission standards tighten, cold start emissions are the major contributor
Ø Low-temperature (< 150°C) emission control is criticalà STORAGE
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THREE WAY CATALYST HYDROCARBON LIGHT-OFF
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HC ADSORBER FUNCTION - IDEAL
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HC ADSORBER FUNCTION - REALITY
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SIMULATED EXHAUST HYDROCARBON SELECTION

m-xylene

i-octane

i-pentane

propylene• Hydrocarbons common to gasoline
exhaust:

• Shorter chain olefins (C2-C6)
• i-pentane is the major C5 paraffin
• i-octane is the major C8 paraffin
• Major aromatic components are

C7-C9
• The concentration of normal paraffins

is typically low
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REACTOR SYSTEM

• Gaseous components fed via MFCs
• Liquid HC fed via Bronkhorst

evaporator
• Feed was stabilized in bypass before

switching over catalyst
• Tin and Tout measured in gas ~2mm

from sample

0.75”

0.83”

Core
Sample
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HC ADSORBER SAMPLES AND AGING
Aging performed in lab reactor with L/R

cycling - 5s 3% CO, 5s 3% O2; N2 all other
times; always with 10% H2O, 10% CO2

X = Tested

HC
Adsorber

Pd:Rh
(g/ft3) 50h/800°C 50h/850°C 50h/900°C

A-10 10:2 X
A-50 50:2 X X X
A-100 100:2 X
B-50 48:2 X
B-70 68:2 X X X
B-100 98:2 X

• Two different passive HC adsorber technologies (each with varied PGM loadings)
• Three different aging temps: 800, 850, 900°C

Main focus
of this study
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EXAMPLE RUN – SAMPLE A-50, 800°C AGED

CO

CO2

i-C5H12

m-C8H10

i-C8H18

C3H6

HC SP TIN Setpoint

TIN

1. Pretreat 30 min/500°C with O2

& H2O
2. Stabilize feed in BYPASS
3. Switch feed over catalyst at

75°C – ADSORPTION
4. Cut off HC flow after  1 minute
5. Immediately set inlet gas temp

to 500°C and begin
ramping(~40 °C/min) –
DESORPTION & OXIDATION

PRETREAT. ADS. DES. & OX.

iso-pentane 0 70 ppm 0
iso-octane 0 50 ppm 0
m-xylene 0 100 ppm 0
propylene 0 250 ppm 0
NO 0 500 ppm 500 ppm
O2 10% 5610 ppm 5610 ppm
H2O 5% 5% 5%

Note: No CO2 in feed so that it could be used for carbon balance; 2300 ppm C1 HC during Ads.
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ADSORPTION PHASE

i-C5H12

m-C8H10

i-C8H18

C3H6

TWC - 800°C Aged

• TWC case comparable to empty reactorà no adsorption
• Adsorption of HC is real, not artifact of valve switching
• Case without adsorption integrated to determine total

HC exposure

i-C5H12

m-C8H10

i-C8H18

C3H6

TINTIN

HC SP HC SP

NO
ADSORPTION

ADSORPTION

HC Adsorber A-50 - 800°C Aged

C3H6 m-C8H10 i-C8H18 i-C5H12

A-50 800°C 38% 100% 100% 84%

% Storage Efficiency
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DESORPTION AND OXIDATION PHASE

i-C5H12

m-C8H10

i-C8H18

C3H6

• TWC stores no HC
• Order of release: i-pentane, i-octane, m-xylene (No propylene release)
• m-xylene is almost entirely oxidized hereà cannot determine true desorption

temperature of m-xylene

TWC - 800°C Aged

i-C5H12

m-C8H10

i-C8H18

C3H6

C3H6 m-C8H10 i-C8H18 i-C5H12 C3H6 m-C8H10 i-C8H18 i-C5H12

A-50 800°C 38% 100% 100% 84% 100% 94% 6% 11%

% Storage Efficiency % Oxidation Efficiency of Stored HC

HC Adsorber A-50 - 800°C Aged
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PINPOINTING DESORPTION TEMP – TESTING IN
ABSENCE OF O2

Oxidized
Portion

• Peak desorption
temperatures
appear lower due to
oxidation

• A significant portion
of m-xylene and
smaller portion of i-
octane are oxidized
on the 800°C aged
adsorber

• i-pentane desorbs
well before light-off

Full Feed No NO & O2 in Feed

Both aged 50h/800°C/10%H2O
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EFFECT OF AGING ON DESORPTION TEMPERATURES –
SAMPLE A-50

• After 900°C aging all
desorption peaks
shift to lower
temperature (10-
30°C shift)

• Desorption peak
temperature of m-
xylene is 30°C lower

900°C Aged - No NO & O2800°C Aged - No NO & O2



1 5

IMPACT OF AGING – SAMPLE A-50

i-C5H12 m-C8H10i-C8H18850°C
800°C

900°C

850°C
800°C900°C

850°C

800°C

900°C

Temperature Programmed Desorption/Oxidation

C3H6 m-C8H10 i-C8H18 i-C5H12 C3H6 m-C8H10 i-C8H18 i-C5H12
A-50 800°C 38% 100% 100% 84% 100% 94% 6% 11%
A-50 850°C 0% 100% 100% 71% n/a 72% 0% 2%
A-50 900°C 0% 100% 100% 62% n/a 22% 4% 0%

% Storage Efficiency % Oxidation Efficiency of Stored HC

• Propylene storage deteriorates after aging at 850°C or higher
• i-octane and m-xylene storage are maintained with aging, but desorption shifts to lower

temperature
• Less i-pentane stored with aging and desorption shifts to lower temperature



1. PRETREAT 30 min with O2 & H2O

2. Cool RCTR to 75°C and stabilize feed in bypass

3. Switch feed over catalyst, 2h ADSORPTION at 75°C
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EFFECT OF AGING ON ADSORPTION CAPACITY AND LIGHT-
OFF TEMPERATURE – SAMPLE A-50

i-C5H12

HHC SP

C3H6

m-C8H10

i-C8H18

Adsorption to Saturation – 800°C Aged

Switch through
reactor

Turn off HC

Sample
A-50

Quantity
Adsorbed (g/L)

800°C Aged 15.8

900°C Aged 15.4

CO2 Generation during TPD
(after 1 min Adsorption)

800°C Aged

900°C Aged

Deactivation mechanisms at 900°C:
• Desorption peaks shift to lower temperature
• Oxidation (T-50) shifts to higher temperature
• Propylene storage capability is lost
Total storage capacity is unaffected

70°C



C3H6 m-C8H10 i-C8H18 i-C5H12 C3H6 m-C8H10 i-C8H18 i-C5H12
A-50 800°C 38% 100% 100% 84% 100% 94% 6% 11%
A-50 850°C 0% 100% 100% 71% n/a 72% 0% 2%
A-50 900°C 0% 100% 100% 62% n/a 22% 4% 0%
B-70 800°C 8% 100% 100% 76% 100% 74% 8% 1%
B-70 850°C 8% 100% 100% 71% 100% 66% 3% 0%
B-70 900°C 0% 96% 86% 45% n/a 20% 0% 0%

% Storage Efficiency % Oxidation Efficiency of Stored HC
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OVERALL OXIDATION EFFICIENCY (% OF EXPOSED
HC OXIDIZED) COMPARED TO ADSORBER B

A-50
B-70

THC Oxidation Efficiency (C1 Basis)*

* THC Oxidation Efficiency Calculated as Average of:
(Exposed C1 HC - Released C1 HC),   (CO+CO2 Measured)

(Exposed C1 HC) (Exposed C1 HC)

• ~45% of exposed HC are oxidized on A-
50 aged at 800°C

• Adsorber B has significantly lower
performance (30%)

• After 850°C both < 30%, after 900°C
both < 10%

• For 800°C aged samples, significant
differences in propylene and m-xylene
performance (otherwise similar)
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SPACE VELOCITY EFFECT – SAMPLE A-50

TINLET

TOUTLET

Blank

Fl
ow

D
ire

ct
io

n

Full-size (30k h-1) vs.
Half-size (60k h-1)

% of Exposed HC Stored % Oxidation Efficiency of Stored HC
C3H6 m-C8H10 i-C8H18 i-C5H12 C3H6 m-C8H10 i-C8H18 i-C5H12

30,000 h-1 38% 100% 100% 84% 100% 94% 6% 11%
60,000 h-1 24% 92% 85% 57% 100% 67% 2% 5%
60,000 h-1 (Blank in Front) 23% 92% 85% 56% 100% 76% 0% 5%

THC Oxidation Efficiency at 30k vs 60k h-1

• At 30k h-1 HC exposure is only 5% of the storage capacity (10% at 60k)
• Adsorption and oxidation rates are space velocity sensitive
• Longer sample may be able to re-adsorb HC downstream

* THC Oxidation Efficiency Calculated as Average of:
(Exposed C1 HC - Released C1 HC),   (CO+CO2 Measured)

(Exposed C1 HC) (Exposed C1 HC)

All aged 50h/800°C/10%H2O



C3H6 m-C8H10 i-C8H18 i-C5H12 C3H6 m-C8H10 i-C8H18 i-C5H12
A-10 13% 100% 100% 78% 100% 84% 0% 5%
A-50 38% 100% 100% 84% 100% 94% 6% 11%
A-100 61% 100% 100% 80% 100% 100% 15% 8%
B-50 15% 100% 100% 73% 100% 84% 2% 3%
B-70 17% 100% 100% 79% 100% 74% 8% 14%
B-100 26% 100% 100% 78% 100% 88% 8% 18%

% Storage Efficiency % Oxidation Efficiency of Stored HC
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PALLADIUM LOADING EFFECT

Sample A
Sample B

THC Oxidation Efficiency (C1 Basis)*

All aged 50h/800°C/10%H2O

• Increasing Pd loading of Sample A
improves:

• Propylene storage
• M-xylene oxidation

• Effect of increased Pd is minor for
Sample B

* THC Oxidation Efficiency Calculated as Average of:
(Exposed C1 HC - Released C1 HC),   (CO+CO2 Measured)

(Exposed C1 HC) (Exposed C1 HC)



C3H6 m-C8H10 i-C8H18 i-C5H12 C3H6 m-C8H10 i-C8H18 i-C5H12

A-10 13% 100% 100% 78% 100% 84% 0% 5%
A-50 38% 100% 100% 84% 100% 94% 6% 11%
A-100 61% 100% 100% 80% 100% 100% 15% 8%

% Storage Efficiency % Oxidation Efficiency of Stored HC
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PROPYLENE STORAGE TRENDS – SAMPLE A

A-50
A-10

A-100

Adsorption of
Propylene

Feed

• Relatively high storage of propylene on adsorber A (always completely
oxidized)

• Propylene storage seems to be linked to Pd content

All aged 50h/800°C/10%H2O
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EFFECT OF NO - PROPYLENE VS. M-XYLENE

% of Exposed HC Stored % Oxidation Efficiency of Stored HC
C3H6 m-C8H10 C3H6 m-C8H10

0 ppm NO 69% 100% 100% 56%
200 ppm NO 57% 100% 100% 89%
500 ppm NO 38% 100% 100% 94%

THC Oxidation Efficiency (C1 Basis)*

• As NO concentration increases:
• Less C3H6 stores
• More m-xylene is oxidized
• Overall % C1 HC oxidized is constant

• NO may inhibit adsorption of propylene
• Less propylene desorbing allows more m-

xylene to be oxidized (similar T-50)* THC Oxidation Efficiency Calculated as Average of:
(Exposed C1 HC - Released C1 HC),   (CO+CO2 Measured)

(Exposed C1 HC) (Exposed C1 HC)

All aged 50h/800°C/10%H2O
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CONCLUSIONS

• Hydrocarbon make-up critical to overall HC adsorber
performance

• Olefins and aromaticsà controlled to some degree
• Alkanesà difficult to control

• i-octane stores but releases before T-50
• i-pentane stores <70% and releases well before

T-50
• 900°C aging destroys performance of all adsorbers

tested, but zeolite does not collapse
• Total storage capacity is unaffected
• Oxidation (T-50) shifts to higher temperature
• Desorption peaks shift to lower temperatures

• Propylene storage appears to be linked to Pd sites
Durability
≥ 850°C

Controllable

Improvement Needed
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