A Study on Synthetic Method and Material Characteristics of Metal Ammine Chlorides as Ammonium Transport Materials for Solid SCR

Cheon Seog (Steve) Yoon and Jong Kook Shin Hannam University, Daejeon, KOREA

KOREA INSTITUTE OF MACHINERY & MATERIALS

Hoyeol Lee and Hongsuk Kim

Korea Institute of Machinery & Materials, Daejeon, KOREA

2016 DOE CLEERS Workshop Holiday Inn Ann Arbor, Ann Arbor, MI, USA

Outline

- Introduction of Solid SCR System
- Metal Ammines
- Lab-Scale Experimental Set-Up
- Test Procedure
- Calcium Ammine Chloride (Test Conditions, Density, IC, Simple Weight Calculation, FT-IR, XRD, TGA)
- Magnesium Ammine Chloride (Test Conditions, Density, IC, Simple Weight Calculation, FT-IR, XRD, TGA)
- New Test Procedure for Water Removal
- Concluding Remarks
- Acknowledgement
- Reference

Solid SCR System

• NOx reduction technology by using NH_3 as a reductant, which is generated from solid ammonium transport materials.

Solid Based SCR

Ammonium Transport Materials	Company	Decomposition Temperature (C)
Solid Urea	Pierburg	140
Ammonia Carbamate	FEV + Tenneco	60
Metal Amine*	Amminex	32~35

(* Calcium Ammine Chloride, Strontium Ammine Chloride)

Advantage (Compared with Liquid Urea SCR)

- ~3 times of **ammonia storage capacity**
- Improvement of **low temperature** NOx conversion **performance** due to direct ammonia gas injection
- Enhancement of the reactants mixing characteristics with exhaust gas

Metal Chlorides

• Calcium Chloride(CaCl₂)

• Magnesium Chloride(MgCl₂)

• Strontium Chloride(SrCl₂)

Material Properties of Metal Ammines

Metal Ammines (Amminex)	Molecular Formula	Molecular Weight g/mol	Density (g/cm ³)	Mols NH ₃ per Mol	Volume Factor (Norm to AdBlue®)	Decomp. Temp, ⁰C	NH3 release energy, kJ/mol NH3
Magnesium Chloride	MgCl ₂	95.21	2.32	0	-	-	-
Magnesium Ammine Chloride	Mg(NH ₃) ₆ Cl ₂	197.39	1.16	б	0.33	142	87
Calcium Chloride	CaCl ₂	110.99	2.15	0	-	-	-
Calcium Ammine Chloride	Ca(NH ₃) ₈ Cl ₂	247.23	1.09	8	0.33	32	69
Strontium Chloride	SrCl ₂	158.53	3.052	0	-	-	-
Strontium Ammine Chloride	Sr(NH ₃) ₈ Cl ₂	294.77	1.3	8	0.33	35	48

[Ref]

1. G. Fuks et al. "A Review of Solid Materials as Alternative Ammonia Sources for Lean NOx Reduction with SCR", SAE 2009-01-0907

2. Gmelins Handbook 1939, The Hydrogen Fuel Alternative - MgCl_2

3. L.J. Gillespie, H.T. Gerry, "Densities, and partial molar volumes of ammonia, for the ammines of calcium and barium chlorides", J. Am. Chem. Soc., 1931, 53(11), pp. 3962-3968 - CaCl₂

4. EP 2428490A1 - SrCl₂

Supply Information of Metal Chlorides

Material	Form	Supplier	Safety	Cost	Note	Picture
Magnesium Chloride (MgCl ₂)	Odorless white crystals	Sigma Aldrich	No possibility of hazardous reactions	\$320 / 1 kg (₩371,000)	anhydrous ≥99.0%	
Calcium Chloride (CaCl ₂)	Odorless white crystals	Sigma Aldrich	No possibility of hazardous reactions	\$360 / 500 g (₩422,000)	anhydrous ≥98.0%	Control of the second sec
Strontium Chloride (SrCl ₂)	Odorless white crystals	Alfa Aesar	Skin irritation and respiratory disease caused by inhalation of dust	\$260 / 100 g (₩300,000)	anhydrous ≥99.5%	

1. Strontium Chloride : anhydrous 99.5%, Green Stone Swiss Co. Limited, \$600 / 500 g (\#700,000)

2. Varied price depends on purity and amount of sample

Lab-Scale Experimental Set-Up

- Study synthetic method of metal ammine chlorides (CaCl₂, MgCl₂ + NH₃ adsorption)
- Simple reactor and glove box was designed and built with ammonia gas tank, nitrogen gas tank, regulator, and DAQ with temperature and pressure sensors.

Test Procedure

- Put a reactor in the glove box, then purge with N_2 gas, in order to remove water content of air.
- Insert metal chloride sample into a reactor and close it in the glove box.
- After take a reactor out of glove box, connect one end of three-way valve with ammonia gas bombe by flexible Teflon tube.
- Adjust temperature of a reactor which is wrap up with heater jacket by heater controller
- Control pressure by a regulator connected to ammonia gas bombe.

Analytical Instruments for Characterization Study

Analytical instruments	Model	Accuracy range
	Accupyc 130	200/ D II
DA	pycnometer	20% K.H.
IC	833	Velocity of flow :
IC.	Basic IC plus	0.9 mL/min
	JASCO	Range :
FT-IR	FT-IR 4100	500 ~ 4000 cm-1
VPD		Range : 10° ~ 90°
ARD	D8 Advance	Step size : 0.02°
		RT ~ 300°
SDI(IGA-DSC)	SDT Q600	1°C/min

Calcium Ammine Chloride

Desorption Chemistry $Ca(NH_3)_8Cl_2\leftrightarrow Ca(NH_3)_2Cl_2+6NH_3$ $Ca(NH_3)_2Cl_2\leftrightarrow Ca(NH_3)Cl_2+NH_3$ $Ca(NH_3)Cl_2\leftrightarrow CaCl_2+NH_3$

Equilibrium vapor pressure of NH_3 from charged $CaCl_2$.

Hannam University

• Equilibrium Vapor Pressure Theory

(1)

(2)

(3)

$$\ln P_{NHB} = \frac{-\Delta_{f,i}}{RT} + \frac{\Delta S_{f,i}}{R} \tag{1}$$

$$P_{NHB(T)} = \exp\left(\frac{-\Delta H_{f,i}}{RT} + \frac{\Delta S_{f,i}}{R}\right)$$
(2)

	NH ₃ pressure at 25 °C	Desorption enthalpy	Desorption entropy
	bar	kJ/mol	$kJ/(mol \cdot K)$
Ca(NH ₃) ₈ Cl ₂	0.63		
No. 1-6		42	0.22-0.24
No. 7		63.2	0.22-0.24
No. 8		69.1	0.22-0.24

Test Conditions of CaCl₂+NH₃

• Test protocol

$C-1: CaCl_2 + (NH_3)$					
Condition	Temperature (°C)	Pressure (bar)	Time (h)		
1 2 3 4 5 6 7 8	141.3 140.8 20 141.3 12.4 149.9 11.1 12.4	1.306 5.444 5.306 5.449 5.353 5.304 5.593 1.102	0 0.4 0.9 1 st day –soaking 0.67 2 nd day-soaking 0.67 3 rd day-soaking-end		

• Adsorption weight and adsorption rate calculation

C-1 CaCl ₂ + NH ₃				
		Weight(g)	Remarks	
m0	Reactor	5953.63		
m1	Initial sample	40.48		
m2(=m0+m1)	Reactor + Initial sample	5994.11		
	Reactor +	6052.97	1 st day	
	Initial sample +	6054.75	2nd day	
m3	Adsorption capacity	6061.60	3 rd day	
		58.86	1 st day	
Δm(=m3-m2)	Adsorption	60.64	2nd day	
	capacity	67.49	3 rd day	
Material	Test time	Adsorption rate(%)	Remarks	
		55.7	1 st day	
C-1 CaCl ₂ +NH ₃	3 days	56	2 nd day	
		58	3 rd day	

Density, IC and Simple Weight Calculation for C-1 CaCl₂+NH₃

Measured Density

Materials for experiments	Run	Density (g/cm ³)	Average density (g/cm ³)	reference (g/cm ³)
	1	1.22		
	2	1.23		
C-1CaCl_+NH3	3	1.22	1.22	1.19
	SD	0.00		
	CV	0.08		

IC	Analytical Item	Unit	Contents	Result
C-1 CaCl ₂ +NH ₃	NH ₃	%	-	31.3
			Ca(NH ₃)Cl ₂	184.11
			Ca(NH ₃) ₂ Cl ₂	92.05
			Ca(NH ₃) ₈ Cl ₂	56.84

• Comparison between IC result and simple weight calculation

	IC(%)	Simple Weight Calculation(%)
C-1 CaCl ₂ +NH ₃	56.84	58

XRD Spectra (C-1 $CaCl_2 + NH_3$)

[Ref] R. Lin, Y. Liu, M. Gao, J. Wang, H. Ge and H. Pan, "Investigation on Performance of the Novel Ammonia-Based Hydrogen Storage Material CaCl₂," Journal of Inorganic Materials, Vol. 23, No. 5, pp. 1059-1063. 2008.

DSC-TGA Analysis (C-1 CaCl₂+ NH₃)

- Identify two step reactions.
- Because desorption starts initially around room temperature, it is very difficult to measure initial mass.
- 26% of initial sample weight is NH_3 gas, due to C-1 CaCl₂+ NH_3 sample(58% of NH_3 adsorption rate).

Adsorption Rate of NH₃ from Charged CaCl₂ (Temperature & Pressure)

- Adsorption rate of NH₃ from charged CaCl₂ for different pressure with fixed ٠ temperature(about 23 °C and 25 °C, 5.2 bar, 5.8 bar, 6.8 bar, and 9.8 bar)
- Anhydrous $CaCl_2$: 30 g ٠
- At higher pressure with same temperature in adsorption region, adsorption rate of NH_3 • is high. $adsorption \ rate(\%) = \frac{m_{Ca(NH_3)_8Cl_2}}{M_{Ca(NH_3)_8Cl_2}}$ 80

New Test Procedure for Water Removal

- Same as previous test procedure.
- After insert $CaCl_2$ into the reactor in glove box, take a reactor out a glove box.
- Before supply ammonia gas, to remove remained water contents, heating a reactor for few hours, and exhaust a reactor of water.
- Cool down a reactor to room temperature, then supply ammonia gas
- Adsorption rate of NH_3 from charged CaCl₂ reached approximately 100%.

lannam Universitv

Adsorption rate of NH₃ from charged CaCl₂ for different test method

It might be residual gas beyond adsorption limit in reactor and tube. By equation of state for an ideal gas, mass of residual gas(0.8 g) contributes to adsorption rate about 4%.

$$adsorption rate(\%) = \frac{m_{Ca(NH_3)_8Cl_2}}{M_{Ca(NH_3)_8Cl_2}}$$

Magnesium Ammine Chloride

HAN NAM Hannam University No. 6

87

0.23

Test Conditions of $MgCl_2 + NH_3$

• Test protocol

$M-1: MgCl_2 + (NH_3)$					
Condition	Temperature (°C)	Pressure(bar)	Time (h)		
1 2 3 4 5 6 7 8	15 280 105 6 275 6.5 220 6.6	1.013 4.984 5.121 5.211 11.05 5.233 12.5 5.3	0 0.4 0.9 1 st day –soaking 0.67 2 nd day-soaking 0.67 3 rd day-soaking-end		

• Adsorption weight and adsorption rate calculation

M-1 MgCl ₂ + NH ₃				
		Weight(g)	Remarks	
m0	Reactor	5956.56		
m1	Initial sample	45.49		
m2(=m0+m1)	Reactor + Initial sample	6002.05		
		6051.41	1 st day	
	Reactor +	6058.91	2 nd day	
m3	Adsorption capacity	6061.61	3 rd day	
	Adsorption capacity	49.36	1 st day	
Δm(=m3-m2)		53.56	2 nd day	
		59.56	3 rd day	
Material	Test time	Adsorption rate(%)	Remarks	
		63	1 st day	
M-1 MgCl ₂ +NH ₃	3 day	65.9	2 nd day	
		67	3 rd day	

Density, IC and Simple Weight Calculation for M-1 MgCl₂+NH₃

Measured Density						IC	Analytical Item	Unit	Contents	Result
Materials for experiments	Run	Density	Average	Average Volume(L)	reference (g/cm ³)	M-1 MgCl ₂ +NH ₃	NH ₃	%	-	45.5
		(g/cm ³)	density (g/cm ³)						Mg(NH ₃)Cl ₂	267.64
M-1 MgCl ₂ + NH ₃	1	1.58	1.58	0.0861	1.252				$Mg(NH_3)_2Cl_2$	133.82
	2	1.58								
	3	1.58							$\operatorname{Nig}(\operatorname{NH}_3)_6 \operatorname{Cl}_2$	11.25
	SD	0.00								
	CV	0.15				Comparison between IC result and simple weight calculation				

	IC(%)	Simple Weight Calculation(%)
M-1 Mg(NH ₃) ₆ Cl ₂	77.23	67

FT-IR Spectra (M-1 MgCl₂ +NH₃)

- $1000 \sim 1200 \text{ cm}^{-1} \text{ bands} : \text{NH}_3 \text{ group of ammonia ion}$
- 3041 cm⁻¹ bands : Mg+

• 1584 cm⁻¹ bands : COO- ion \rightarrow Cl₂

• $3180 \sim 3360 \text{ cm}^{-1} \text{ bands} : \text{H}_2\text{O}$

XRD Spectra (M-1 MgCl₂+ NH₃)

$$n\lambda = \frac{2d}{\sin\theta} - \frac{2d}{\tan\theta}\cos\theta = \frac{2d}{\sin\theta}(1 - \cos^2\theta) = \frac{2d}{\sin\theta}\sin^2\theta$$
$$n\lambda = 2d \cdot \sin\theta$$

- d : distance between atomic layers in a crystal
- θ : certain angles of incidence
- $\boldsymbol{\lambda}$: wavelength of the incident X-ray beam
- n : integer

2θ(deg)	d spacing(Å)
35.12	5.699
30.4	2.938
24.74	3.552

[Ref] M. Owen, M, Royse, P. Edwards, I.F. David, "The Structure and Desorption Properties of the Ammines of the Group II Halides," ELSEVIER, *Chemical Physics*, Vol. 427, pp. 38~43, 2013.

DSC-TGA Analysis (M-1 MgCl₂+ NH₃)

- Identify three step reaction.
- 56.38% of initial sample weight is NH_3 gas, due to M-1 MgCl₂+NH₃ sample(67% of NH₃ adsorption rate).

Adsorption Rate of NH₃ from Charged MgCl₂ (Temperature & Pressure)

- Adsorption rate of NH₃ from charged MgCl₂ for different pressure with fixed temperature(about 20 $^{\circ}$ C and 70 $^{\circ}$ C, 5.8 bar, and 6.4 bar)
- Anhydrous $MgCl_2 : 30 g$
- At lower temperature and higher pressure in adsorption region, adsorption rate of NH₃ is

New Test Procedure for Water Removal

- Same as previous test procedure.
- After insert $MgCl_2$ into the reactor in glove box, take a reactor out a glove box.
- Before supply ammonia gas, to remove remained water contents, heating a reactor for few hours, and exhaust a reactor of water.
- Cool down a reactor to room temperature, then supply ammonia gas
- Adsorption rate of NH_3 from charged $MgCl_2$ reached approximately 100%.

It might be residual gas beyond adsorption limit in reactor and tube. By equation of state for an ideal gas, mass of residual gas(5.25 g) contributes to adsorption rate about 12.1%.

adsorption rate(%) = $\frac{m_{Mg(NH_3)_6Cl_2}}{M_{Mg(NH_3)_6Cl_2}}$

27

Adsorption rate of NH₃ from charged MgCl₂ for different test method

Concluding Remarks (1/2)

To make calcium ammine chloride and magnesium ammine chloride in lab-scale, simple reactor and glove box was designed and built with ammonia gas tank, nitrogen gas tank, regulator, and DAQ with temperature and pressure sensors.

- Basic test conditions of charging ammonia gas to anhydrous calcium chloride and anhydrous magnesium chloride are chosen from equilibrium vapor pressure by Van't Hoff plot based on thermodynamic properties of materials.
- Synthetic method of calcium ammine chloride and magnesium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%) for simple weight calculations which were confirmed by IC.
- Lab-made calcium ammine chloride and magnesium ammine chloride were analyzed by TGA and DSC to clarify decomposition step in the equations of chemical reaction.

Concluding Remarks (2/2)

- To understand material characteristics for lab-made calcium ammine chloride and magnesium ammine chloride, DA, XRD and FT-IR analysis were performed using the published data available in literature.
- From analytical results, the water content in the lab-made calcium ammine chloride and magnesium ammine chloride can be recognized.
- Maxium pressures of test conditions are restricted to ambient temperature, because ammonia gas is supplied by liquid ammonia in a tank.
- At lower temperature and higher pressure in adsorption region, adsorption rate of NH₃ is high.
- A new test procedure for water removal was proposed, by which the adsorption rate of lab-made sample was found to be approximately 100%.

Acknowledgments

• This research was supported by the Center for Environmentally Friendly Vehicle (CFEV) as a Global-Top Project of the Ministry of Environment, Korea (KMOE)

Reference

- G. Fulks, G. B. Fisher, K. Rahmoeller, M. Wu, and E. D'Herde, "A Review of Solid Materials as Alternative Ammonia Sources for Lean NOx Reduction with SCR," SAE 2009-01-0907, 2009.
- H. Lee, C. S. Yoon, and H. Kim, "A Study on Reaction Rate of Solid SCR for NOx Reduction of Exhaust Emissions in Diesel Engine," Transaction of KSAE, Vol. 21, No. 6, pp. 183-194, 2013.
- J. K. Shin, H. Lee, C. S. Yoon, and H. Kim, "Analytical Study on Re-solidification Materials(Ammonium Carbonate Intermediates) for NOx Reduction of Exhaust Emissions in Diesel Engine with Solid SCR," Transaction of KSAE, Vol. 22, No. 4, pp. 151-159, 2014.
- H. Kim, C. S. Yoon, J. Lee, and H. Lee, "A Study on the Solid Ammonium SCR System for Control of Diesel NOx Emissions," SAE 2014-01-1535, 2014.
- J. K. Shin, C. S. Yoon, and H. Lee, "A Study on Synthetic Method and Material Characteristics of Calcium Ammine Chloride as Ammonia Transport Materials for Solid SCR," Transaction of KSAE, Vol. 23, No. 2, pp. 199-207, 2014.
- J. K. Shin, C. S. Yoon, and H. Lee, "A Study on Synthetic Method and Material Characteristics of Magnesium Ammine Chloride as Ammonia Transport Materials for Solid SCR," Trans. Korean Society of Mechanical Engineers B. Vol. 39, No. 11, pp. 843-851, 2015.

Thank you for your attention !

Cheon Seog Yoon (csyoon@hnu.kr)

Professor, Ph.D. Department of Mechanical Engineering Hannam University Daejeon, KOREA

