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Introduction

meet the increasingly stringent emission regulations.

CIRegeneration is needed for the DPF
to burn off the accumulated soot in
the DPF.
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Introduction

CIThe active regeneration process of the DPF.
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Introduction

CIBoth the peak temperature and the maximum temperature grac
of the DPF during active regeneration should be well controlled in
order to enhance the reliability and durability of the filter.

Too high temperature | >
(>1100°C for cordierite DPF)

- TS ——

Cracks

Too high temperature gradient
(>350°C/cm for cordierite DPF)




Experiment Setup

ClEngine and catalysts specifications

Diesel, 4-strokes, 6-

Sngllie i5pe cylinders in line
Air intake Inter-cooled,
system turbocharged
Fuel metering |High pressure
system common rail
Bore 110 mm

Stroke 132 mm
Displacement |7.5L
Compression 17.4

ratio

Rated power

248 kW @ 2300 rpm

Maximum
torque

1350 N-m @ 1200-
1700 rpm

Catalysts Specifications
®10.5"x6 “
DOC : :
400 cpsi/4 mil
®10.5"x11 “
CDPF

200 cpsi/12 mil




Circumferential Uniformity Test

the inner temperature of the filter.

O The temperature circumferential uniformity of three different
sections at the DPF length direction was analyzed.
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Circumferential Uniformity Test

CICase 1: no soot loading in DPF, no HC injection.
CIThe temperature circumferential distribution of the three sections is
very homogeneous.
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Circumferential Uniformity Test

CICase 2: no soot loading in DPF, with HC injection.

CThe temperature at the left-bottom region is higher than that of the
right-top region in all the three sections, which should be caused by
the nonuniform distribution of the HC at the DOC inlet.
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Circumferential Uniformity Test

[C1Case 3: DPF soot loading = 3 g/L, with HC injection.

CIThe temperature circumferential distribution of the three sections is
highly similar with case 2, which indicates that the HC spray is the

primary contributor of the circumferential nonuniformity. o
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Axial and Radial Uniformity Test

the axial and radial uniformity of the DPF temperature field during
active regeneration.

Exhaust flow direction
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Axial and Radial Uniformity Test

CIThe DPF temperature field
was visualized using cubic
interpolation based on
the measured
temperature data.

Regeneration conditions:
exhaust mass flow = 440 kg/h
DPF soot loading =4 g/L

DPF inlet temperature = 600 °C

Temperature (°C)

T
249 238 251.5 237.2
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Temperature gradient (°C/cm)




Axial and Radial Uniformity Test

CIThe DPF temperature field
was visualized using cubic
interpolation based on
the measured
temperature data.

CThe peak temperature
occurred at the center of
the DPF rear end.

CThe maximum
temperature gradient
occurred at the DPF outer
edge.

Regeneration conditions:
exhaust mass flow = 440 kg/h
DPF soot loading =4 g/L

DPF inlet temperature = 600 °C

Temperature (°C)

517 552.8
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Axial and Radial Uniformity Test

effect on the peak temperature and maximum temperature gradient,
and it should be accurately controlled during active regeneration.
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Axial and Radial Uniformity Test

CIThe soot loading level for DPF regeneration triggering is an
important parameter for DPF regeneration control calibration.

CIThe more soot loading in the DPF, the higher peak temperature and
maximum temperature gradient during regeneration.
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Axial and Radial Uniformity Test
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O The peak temperature and the maximum temperature gradient are
both decreased at high space velocity condition due to the
enhancement of the heat transfer.
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Numerical Interpretation (CFD Modeling)

CdModeling platform: AVL FIRE
[ Calculation domain and mesh generation

Y

HC injector

local mesh densification of
the HC injector and the pipe




Soot Loading Process Simulation

— The flow distribution after DOC is very homogeneous.

— The soot accumulation in the DPF tends to be homogeneous, because the
flow rate will be reduced due to the high flow restriction if somewhere has
more soot, and then less soot will be trapped at this region.
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Diesel Spray Simulation

COHC injector parameters and spray model selection

Exhaust conditions

Number of nozzle holes 1
Nozzle hole diameter 0.5 mm
Spray cone angle 25 °
Diesel injection rate 3.1 kg/h

Wall interaction model

Kuhnke model

Evaporation model

Dukowicz model

Exhaust

Xnaus 440 kg/h
mass flow
Exhaust 300 °C
temperature
Environment 25 oC

temperature

Breakup model

Wave model




Diesel Spray Simulation

O The HC distribution at DOC inlet is nonuniform due to the short ™
evaporation distance and mixing time of the diesel spray.

CThe HC distribution at DOC inlet will influence the temperature
distribution at the DPF inlet, thus the temperature field of the DPF

d u ri ng aCtive rege ne ratio n. A00C_HCTL_ 0487 8pecies:Mole_Fraction _C3a3HG[]
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DPF Regeneration Simulation

CIHow to take the soot distribution and HC nonuniformity effects ifito
consideration? —

HC distribution calculated

ray simulatio
B

soot distribution calculated
from soot loading simulation




DPF Regeneration Simulation

CIDPF regeneration reactions calibration

- NO2 regeneration was ignored due to
the low NO2 concentration during active
regeneration, which has been mostly
converted into NO at high temperature
because of chemical equilibrium.
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DPF Regeneration Simulation

CIDPF regeneration simulation results

Temperature Temperature gradient

Case_BTL_110.0:Cat Temp_Solid[<] Case B:TI_100.0:Cat: GradSolidTemperature[kim]
1077 .5 53121

. 10237 . 4867 .2
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L | 562 46 L {35328
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L | 75496 126431
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l P l gradient
53994 g63.84

Simulation: 804 °C Simulation: 53.1 °C/cm

Experiment: 732 °C >y, Experiment: 78.3 °C/cm




DPF Regeneration Simulation

of the DPF during active regeneration can be significantly decreased
with the optimization of the HC distribution at the DOC inlet.

900 —

B peak temperature 160 €

53.1 —B= maximum temperature gradient | 8

850 | -\168 450 (:\_T

o . | o

— 804 805 g

O 800 F 140 %

= o)

m LS

of SO K=

c 750 - g

° {120 g

§ 711 5
700 |

= 110 §

£

=

650 0o g

nonuniform HC, nonuniform HC, uniform HC,
nonuniform soot uniform soot nonuniform soot



Summary

1111

CIThe DPF temperature field during active regeneration was well
studied in order to enhance the reliability and durability of the filter.

1A 3D CFD simulation, which takes the soot distribution and HC
nonuniformity effect into consideration, was conducted to interpret
the DPF temperature field during regeneration.

CThe HC distribution at the DOC inlet has a significant effect on the
DPF temperature filed during regeneration, and it should be well
optimized.

CIThe DPF temperature field during DTI (drop to idle) regeneration
should be studied in the future work, which is much more critical for
the DPF reliability and durability than the steady state regeneration.
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Soot Loading Process Simulation

CIThe soot loading process

¥
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Diesel Spray Simulation

CIDiesel spray




DPF Regeneration Simulation

CIDPF regeneration

Temperature Temperature gradient

Case_B:TI_5.0:Cat:GradSolidTermperature[Kim]
53121

Case_B:TI_5.0:Cat Temp_Solid[K]
1077.5




