Impact of Novel Fuel Components on the Performance of Three-Way Catalysts for Control of SI Engine Emissions

Sreshtha Sinha Majumdar, Josh A. Pihl, Todd J. Toops
National Transportation Research Center, Oak Ridge National Laboratory

Acknowledgement: Funding provided by DOE Vehicle Technologies Office (Kevin Stork, Gurpreet Singh, Leo Breton, Mike Weismiller)

Motivation
- DOE-funded Co-Optimization of Fuels and Engines Initiative aims to simultaneously develop high performance fuels and advanced high efficiency engines to reduce petroleum consumption
- To achieve commercialization, advanced engines running on novel fuels must still meet U.S. EPA emissions regulations
- Three-way catalysts (TWCs) are extremely effective at controlling emissions from SI engines when hot; cold start performance is critical for compliance, and will depend on fuel composition
- Evaluation of potential fuel components requires quantification of impact on TWC light-off behavior

Experimental Methods and Key Results
- Lambda (λ) sweep 0.999-0.995 with E10 surrogate fuel
 - $\lambda = \frac{\text{AFR}}{\text{AFR}_{\text{stoic.}}}$
- $\lambda = 0.999$ was selected for further light-off experiments

Impact of Fuel Light-off on other Regulated Pollutants
- Alcohols, straight-chain ketones, alkanes, esters and cycloalkanes have minimal effect on CO light-off
- Aromatic hydrocarbons, aromatic ethers, cyclic ketones, and alkenes have a significant impact on CO light-off → inhibition of CO oxidation until the HC reacts
- NOx T_{50}s comparable across different fuels because CO and H2 reduce a significant fraction of NOx
- NOx T_{90}s follow trends similar to the HC conversions: at $\lambda = 1$, high HC conversions are required to achieve high NOx conversions

Future Work
- Real-world fuels are complex multicomponent blends
- Key question: Can we predict the light-off behavior of a blend from the light-off profile of its pure components?
- "Simple" linear combination fails to accurately predict the blend light-off behavior
- Inclusion of thermal effects and chemical interactions on the catalyst surface may improve the predictions

Acknowledgements
We gratefully acknowledge valuable discussions with Bob McCormick, Dan Gaspar, and Jim Szybist and experimental support from Will Brookshear.

Synthetic Exhaust Flow Reactor Configuration
- Extensive range of liquid fuel components, including many oxygenates, makes this study unique
- Automated flow reactor controlled with LabVIEW
- Vapor delivery module used to introduce liquid fuel components
- FID, FTIR and MS used to analyze effluent from the reactor
- Catalyst aging and evaluation experiments conducted according to the U.S. DRIVE Low-Temperature Oxidation Catalyst Test Protocol*
 - Aged 50 h @ 800 C: neutral/rich/lean cycles
 - Reaction profile repeated 3x per fuel to ensure reproducibility of results

Selected Fuel Light-off Profiles over aged TWC
- Excellent reproducibility was achieved for all fuel components
- Light-off behavior depends on both functional groups and molecular structure (linear, branched, cyclic)
- Alcohols < linear ketone < long-chain alkane < ester, cycloalkanes < E10 surrogate < aromatic ethers, aromatic hydrocarbons < alkenes

*https://cleers.org/low-temperature-protocols/