Low-dimensional Models for Real Time Simulations of Catalytic After-treatment Systems

Saurabh Y. Joshi, Divesh Bhatia Jin Xu

Michael P. Harold Vemuri Balakotaiah

Department of Chemical and Biomolecular Engineering University of Houston, Houston, Texas 77204

CLEERS Workshop April, 2009

Funding: DOE-NETL, BASF, Ford

LNT/SCR, TWC/DOC & DPF Research at UH

Overview

- Part A: Low-dimensional Models for Real Time Simulations of Catalytic After-treatment Systems (TWCs, DOCs, LNTs, SCRs and DPFs)
 [Ref: Joshi, Harold and Balakotaiah, AIChE J., May 2009]
 •low-d models for diffusion-convection-reaction
 - simulation of TWC cold start behavior in real time
 - extensions of low-d models

Part B:Analysis of monolith reactors using low-d models

- (i) Controlling regimes
- (ii) External Mass transfer controlled regime
- (iii) Light-off Behavior
- (iv) Multiple steady-states and periodic states
- (v) Fronts in monoliths
- (vi) Bifurcation analysis
- (vii) Microkinetic models vs. global kinetic models

Catalytic Monoliths- Multiple Length/ Time Scales

Catalytic Converter

¹⁰⁻⁵⁰ A°

Models of Homogeneous & Catalytic Reactors

Homogeneous Tank Reactor

Detailed Model:

 $\mathbf{C}\frac{\partial \mathbf{u}}{\partial t} = \mathbf{F}(\mathbf{x}, \mathbf{u}, \nabla \mathbf{u}, \nabla^2 \mathbf{u}, \mathbf{p}); \quad \mathbf{x} \text{ in } \Omega, t > 0$ I.C.: $\Gamma(\mathbf{x}, \mathbf{u}, \nabla \mathbf{u}, \mathbf{p}) = 0 \text{ in } \Omega, t = 0$

B.C.: B($\mathbf{x}, \mathbf{u}, \nabla \mathbf{u}, \mathbf{p}$) = 0 in $\partial \Omega$, t > 0

Ideal CSTR Model: (Bodenstein & Wolgast, 1908)

$$\frac{d\overline{C}}{dt} = \frac{1}{\tau} (C_{in} - \overline{C}) - R(\overline{C}); \quad t > 0$$

$$LC_{in} = \overline{C} (t = 0) = \overline{C}_{0}$$

<u>Objective</u>: Develop accurate low-dimensional models (in terms of average/measurable quantities) without losing any important physics at small length/time scales.

Detailed Diffusion-Convection-Reaction Models for Monoliths

fluid

interfacial coupling

Steady State Balance Equations

Boundary Conditions

$$\frac{\partial C_{f}}{\partial t} + u(x', y') \frac{\partial C_{f}}{\partial z'} = D_{m} \left(\nabla_{*}^{2} C_{f} + \frac{\partial^{2} C_{f}}{\partial z'^{2}} \right), (x', y') \in \Omega$$
convection

$$\mathcal{E}_{p} \frac{\partial C_{s}}{\partial t} + R(C_{s}) = D_{e} \left(\nabla_{*}^{2}C_{s} + \frac{\partial^{2}c_{s}}{\partial z'^{2}} \right), \quad (x', y') \in \Omega_{2}$$
reaction
diffusion

Coupled PDEs in (x', y', z')

$$n.D_{m}\nabla_{*}C_{f} = n.D_{e}\nabla_{*}C_{s}$$

$$C_{f} = C_{s}$$

$$n.D_{e}\nabla_{*}C_{s} = 0, \ (x', y') \in \partial\Omega_{2}$$

$$D_{m}\frac{\partial C_{f}}{\partial z'} = u(x', y')(C_{f} - C_{in}(t)) & \frac{\partial C_{s}}{\partial z'} = 0, \ @z' = 0$$

$$\frac{\partial C_{f}}{\partial z'} = \frac{\partial C_{s}}{\partial z'} = 0, \ @z' = L$$

Traditional Low-dimensional Models for Catalytic Reactor Models

Pseudo-homogeneous PFR model

$$\frac{\partial c}{\partial t} + \overline{u} \frac{\partial c}{\partial x} + R(c) = 0; \ 0 < x < L, \ t > 0 \quad B.C. \ c(0,t) = c_{in}(t), \ I.C. \ c(x,0) = c_o(x)$$

Two-phase model for a packed-bed reactor

(Wicke, 1960; Liu & Amundson, 1963)

$$\varepsilon_{f} \frac{\partial c_{f}}{\partial t} + \overline{u} \frac{\partial c_{f}}{\partial x} = -k_{c} a_{v} (c_{f} - c_{s}); < 0 < x < L, t > 0 \qquad B.C. \quad c_{f} (0, t) = c_{f,in}(t)$$

$$I.C. \quad c_{f} (x, 0) = c_{fo}(x)$$

$$(1 - \varepsilon_{f}) \frac{\partial c_{s}}{\partial t} = k_{c} a_{v} (c_{f} - c_{s}) - R(c_{s}); t > 0 \qquad c_{s}(x, 0) = c_{so}(x)$$

Catalytic Reactor Model with Dispersion and Mass Transfer Coefficients

$$\varepsilon_{f} \frac{\partial c_{f}}{\partial t} + \overline{u} \frac{\partial c_{f}}{\partial x} = D_{ef} \frac{\partial^{2} c_{f}}{\partial x^{2}} - k_{c} a_{v} (c_{f} - c_{s}); < 0 < x < L, t > 0 \quad B.C.1 \quad D_{ef} \frac{\partial c_{f}}{\partial x} = \overline{u} [c_{f} (0, t) - c_{f,in}(t)]$$

$$(1 - \varepsilon_{f}) \frac{\partial c_{s}}{\partial t} = k_{c} a_{v} (c_{f} - c_{s}) - R(c_{s}); t > 0 \qquad B.C.2 \qquad \frac{\partial c_{f}}{\partial x} = 0$$

Catalytic Reactor Model with Dispersion, Mass Transfer Coefficients & Intra-particle diffusion

$$(1 - \varepsilon_f)\frac{\partial c_s}{\partial t} = k_c a_v (c_f - c_s) - R(c_s)\eta; \ t > 0$$

$$\nabla . (D_e \nabla c) = R(c) \quad \text{in } \Omega; \ c = c_s \quad \text{on } \partial \Omega; \quad \eta = \frac{1}{V_\Omega} \int_\Omega R(c) d\Omega / R(c_s)$$

Detailed Diffusion-Convection-Reaction Models for Monoliths

fluid

interfacial coupling

washcoat

Steady State Balance Equations

Boundary Conditions

$$\frac{\partial C_{f}}{\partial t} + u(x', y') \frac{\partial C_{f}}{\partial z'} = D_{m} \left(\nabla_{*}^{2} C_{f} + \frac{\partial^{2} C_{f}}{\partial z'^{2}} \right), (x', y') \in \Omega$$
convection

$$\mathcal{E}_{p} \frac{\partial C_{s}}{\partial t} + R(C_{s}) = D_{e} \left(\nabla_{*}^{2}C_{s} + \frac{\partial^{2}c_{s}}{\partial z'^{2}} \right), \quad (x', y') \in \Omega_{2}$$
reaction
diffusion

Coupled PDEs in (x', y', z')

$$n.D_{m}\nabla_{*}C_{f} = n.D_{e}\nabla_{*}C_{s}$$

$$C_{f} = C_{s}$$

$$n.D_{e}\nabla_{*}C_{s} = 0, \ (x', y') \in \partial\Omega_{2}$$

$$D_{m}\frac{\partial C_{f}}{\partial z'} = u(x', y')(C_{f} - C_{in}(t)) & \frac{\partial C_{s}}{\partial z'} = 0, \ @z' = 0$$

$$\frac{\partial C_{f}}{\partial z'} = \frac{\partial C_{s}}{\partial z'} = 0, \ @z' = L$$

Spatial Averaging of Convection-Diffusion-Reaction (CDR) Models

Balakotaiah & Chang; SIAM J. Appl. Math., 63,1231-1258 (2003) Balakotaiah, Chem. Engng. Sci., 63, 5802-5812,2008 Joshi, S. Y., Harold, M. P., V. Balakotaiah, AIChE J., May 2009

Observations:

- Diffusion is dominant at small length scales
- Local Diffusion operator of the CDR equation (with a periodic/ Neumann
- & Robin BCs has a zero eigenvalue with a constant eigenfunction.
- Spatial degrees of freedom (small length scales) can be eliminated near the zero eigenvalue (small parameter).

Procedure:

- Write the detailed (microscopic) model
- Identify the smallest length/time scale (expressed in terms of a small parameter, say p)
- Express all other parameters (λ_i) as $\lambda_i = \alpha_i p^n$, where α_i is O(1) & n = 1,0, -1, ...
- Apply the L-S reduction (eliminate spatial degrees of freedom)

Concentration Modes

$$C_{fm} = \frac{\int_{\Omega_{1}} u(x, y) C_{f}(x, y) d\Omega}{\int_{\Omega_{1}} u(x, y) d\Omega} = \text{cup-mixing concentration}$$

$$< C_{f} >= \frac{\int_{\Omega_{1}} C_{f}(x, y) d\Omega}{\int_{\Omega_{1}} d\Omega} = \text{average concentration in fluid}$$

$$C_{s} = \frac{\int_{\Omega_{1}} C_{1}(x, y) d\Gamma}{\int_{\Omega_{1}} d\Gamma} = \frac{\int_{\Omega_{1}} C_{2}(x, y) d\Gamma}{\int_{\Omega_{1}} d\Gamma}$$

$$\int_{\Omega_{1}} \frac{\partial_{\Omega_{1}}}{\partial \Gamma} = \frac{\int_{\Omega_{1}} C_{2}(x, y) d\Gamma}{\int_{\Omega_{1}} d\Gamma}$$

On the Relationship Between Aris and Sherwood Numbers and Friction and Effectiveness Factors

(i) Concept of an internal mass transfer coefficient:

$$k_{ci} = \frac{\frac{1}{A_{\Omega'}} \int_{A_{\Omega'}} D_e \nabla C.n \, dS}{(\overline{C_s} - \langle C \rangle)},$$

Flux,
$$j = k_{ci}(C_s - \langle C \rangle)$$

Sherwood number, $Sh_{\Omega} = \frac{k_{ci}R_{\Omega}}{D_{e}}$

(ii) Effectiveness factor:

$$\eta = \frac{\langle r(C) \rangle}{r(C_s)} = \frac{\langle C \rangle}{C_s} \text{ (for linear kinetics)}$$

V. Balakotaiah, Chem. Engng. Sci., 2008 $C_s =$ solid-fluid interfacial concentration $\partial \Omega$ <C> = volume averaged concentration. <u>(</u>2 $R_{\Omega} = \frac{V_{\Omega}}{A_{\Omega}}$ $\Phi^{2} = \frac{R_{\Omega}^{2}k}{D}$ (iii) Aris numbers: $\eta = 1 - Ar_1 \Phi^2 + Ar_2 \Phi^4 - \dots$ $\eta = \frac{1}{1 + \frac{\Phi^2}{Sh_{\varsigma}}}$

(iv) Friction factors for viscous flow in a duct (2-D):

$$\frac{f \operatorname{Re}}{8} = Sh_{\Omega\infty} = \frac{1}{Ar_1}; \quad \operatorname{Re} = \frac{4R_{\Omega}\langle u \rangle}{V}$$

(i) Low-dimensional Model for Multicomponent Nonlinear Diffusion-Reaction Problems(ii) Low-dimensional Models for Diffusion-Convection-Reaction Problems

Joshi, S.Y., Harold, M. P. and Balakotaiah, V. AIChE J., May 2009

Low-Dimensional Models for Diffusion-Reaction Problems

The Internal Diffusion-Reaction Problem in a Porous Catalyst $\partial \Omega$

$$\mathcal{E}_{p} \frac{\partial C}{\partial t'} = \nabla .(D_{e} \nabla C) - R(C); \quad (x', y', z') \in \Omega', t' > 0 \qquad \langle x', y', z' \rangle \in \Omega', t' > 0$$

$$C = C_{s}(t'); \quad \text{on } \partial \Omega'.$$

$$C = C_{i}(x', y', z') \quad \text{at } t' = 0$$

$$C = \langle C \rangle + C'$$

$$(C) \qquad (C) \qquad (C)$$

Volume averaged $\langle C \rangle$ concentration in particle

$$(t') = \frac{1}{V_{\Omega'}} \int_{\Omega'} C(x', y', z', t') d\Omega'$$

$$\langle C' \rangle = 0$$

 $\langle R(\langle C \rangle + C') \rangle = R(\langle C \rangle) + O(C')^2$

Low-Dimensional Model

$$\begin{split} \boldsymbol{\varepsilon}_{p} V_{\Omega'} \frac{d\langle C \rangle}{dt'} &= A_{\Omega'} \, k_{ci} \, (\overline{C_{s}(t')} - \langle C \rangle) - V_{\Omega'} R(\langle C \rangle) \\ &\langle C \rangle &= \langle C_{i} \rangle \ \text{ at } t' = 0, \end{split}$$

Three-mode Model for an Isothermal Monolith $(L/d_h >>1)$

$$\frac{\partial C_{fm}}{\partial t} + \left\langle u \right\rangle \frac{\partial C_{fm}}{\partial x} = -\frac{k_{ce}}{R_{\Omega}} \left(C_{fm} - C_{s} \right)$$

$$\varepsilon_{p}\delta_{w}\frac{\partial\langle C_{w}\rangle}{\partial t} = k_{ci}(C_{s} - \langle C_{w}\rangle) + \delta_{w}R(\langle C_{w}\rangle)$$

$$y'$$

 z'
 Ω_1
 Ω_2
 Ω_2
 Ω_2
 Ω_2
 Ω_2
 Ω_1

$$k_{ce}\left(C_{fm}-C_{s}\right)=k_{ci}\left(C_{s}-\left\langle C_{w}\right\rangle\right)$$

$$k_{ci} = \frac{Sh_{i\Omega}D_e}{\delta_w} \qquad k_{ce} = \frac{Sh_{e\Omega}D_m}{R_{\Omega}}$$

Two-Mode form:

$$\begin{aligned} \frac{\partial C_{fm}}{\partial t} + \left\langle u \right\rangle \frac{\partial C_{fm}}{\partial x} &= -\frac{k_{mo}}{R_{\Omega}} (C_{fm} - \left\langle C_{w} \right\rangle) \\ \varepsilon_{p} \delta_{w} \frac{\partial \left\langle C_{w} \right\rangle}{\partial t} &= k_{mo} (C_{fm} - \left\langle C_{w} \right\rangle) - \delta_{w} R(\left\langle C_{w} \right\rangle) \\ IC1: \ C_{fm}(x, t = 0) &= C_{m0}(x) \\ IC2: \ \left\langle C_{w} \right\rangle (x, t = 0) &= \left\langle C_{w0} \right\rangle (x) \\ BC: \ C_{fm} &= C_{in}(t) \ @ x = 0 \end{aligned}$$

$$\frac{1}{k_{mo}} = \frac{1}{k_{ci}} + \frac{1}{k_{ce}}$$
$$= \frac{\delta_w}{Sh_{i\Omega}D_e} + \frac{R_{\Omega}}{Sh_{e\Omega}D_m}$$
$$\approx \frac{\delta_w}{Sh_{i\Omega\infty}D_e} + \frac{R_{\Omega}}{Sh_{e\Omega\infty}D_m}$$

Analogy between internal and external mass transfer coefficients

Theory and Computation of Internal Mass Transfer Coefficients

Balakotaiah V. "On the relationship between Aris and Sherwood numbers and friction factor and effectiveness factors", Chemical Engineering Science. 2008;63,5802-5812.

Joshi, S. Y., Harold, M. P. and V. Balakotaiah, Chem. Engng. Sci., 2009, in review

Sh_i for some common geometries

Channel Shape	$Sh_{i\infty}$ and Λ			
Figure a	$Sh_{i\infty} = 3$ and $\Lambda = 0.32$			
Figure b	R_2/R_1 $Sh_{i\infty}$ Λ			
	1.01 3.0125 0.38			
	1.1 3.153 0.36			
	1.2 3.311 0.34			
Figure c	a/R $Sh_{i\infty}$ Λ			
	1 0.826 0.67			
	1.1 1.836 1.2			
	1.2 2.533 0.73			
Figure d	a/R $Sh_{i\infty}$ Λ			
	1.7321 0.84 0.62			
	1.9245 1.45 1.25			
	2.4744 2.92 0.85			
Figure e	b/a b/r $Sh_{i\infty}$ Λ			
	1.11 5 2.645 0.58	}		
	1.25 10 3.088 0.39)		
Figure f	a/R $Sh_{i\infty}$ Λ			
	1.155 0.814 0.77			
	1.17 1.16 2.08			
	1.2 1.74 1.6			

Joshi SY, Harold MP and Balakotaiah V. On the use of internal mass transfer coefficients in modeling of diffusion and reaction in catalytic monoliths. Chemical Engineering Science (in review)

Three-mode Model for an Isothermal Monolith $(L/d_h >>1)$

$$\frac{\partial C_{fm}}{\partial t} + \left\langle u \right\rangle \frac{\partial C_{fm}}{\partial x} = -\frac{k_{ce}}{R_{\Omega}} \left(C_{fm} - C_{s} \right)$$

$$\varepsilon_{p}\delta_{w}\frac{\partial\langle C_{w}\rangle}{\partial t} = k_{ci}(C_{s} - \langle C_{w}\rangle) + \delta_{w}R(\langle C_{w}\rangle)$$

$$k_{ce} \left(C_{fm} - C_{s} \right) = k_{ci} \left(C_{s} - \left\langle C_{w} \right\rangle \right)$$

$$y'$$

 z'
 x'
 Ω_1
 Ω_2
 Ω_2
 Ω_2
 Ω_2
 Ω_2

$$k_{ci} = \frac{Sh_{i\Omega}D_e}{\delta_w} \qquad k_{ce} = \frac{Sh_{e\Omega}D_m}{R_{\Omega}}$$

Two-Mode form:

$$\frac{\partial C_{fm}}{\partial t} + \langle u \rangle \frac{\partial C_{fm}}{\partial x} = -\frac{k_{mo}}{R_{\Omega}} (C_{fm} - \langle C_w \rangle)$$

$$\mathcal{E}_p \delta_w \frac{\partial \langle C_w \rangle}{\partial t} = k_{mo} (C_{fm} - \langle C_w \rangle) - \delta_w R(\langle C_w \rangle)$$

$$IC1: C_{fm}(x, t = 0) = C_{m0}(x)$$

$$IC2: \langle C_w \rangle (x, t = 0) = \langle C_{w0} \rangle (x)$$

$$BC: C_{fm} = C_{in}(t) @ x = 0$$

$$\frac{1}{k_{mo}} = \frac{1}{k_{ci}} + \frac{1}{k_{ce}}$$
$$= \frac{\delta_w}{Sh_{i\Omega}D_e} + \frac{R_{\Omega}}{Sh_{e\Omega}D_m}$$
$$\approx \frac{\delta_w}{Sh_{i\Omega\infty}D_e} + \frac{R_{\Omega}}{Sh_{e\Omega\infty}D_m}$$

Comparison of Accuracy of Low-D Model for Linear Kinetics, Single Reaction and Isothermal Case:

Circular channle with uniform washcoat thickness

Low-Dimensional Model for Multi-component DCR Problem: Balakotaiah, Chem. Engng. Sci., 63, 5802-5812,2008

Species conservation:

$$\begin{split} \frac{\partial C_{fm_j}}{\partial t} + \langle u \rangle \frac{\partial C_{fm_j}}{\partial x} &= -\frac{k_{ce,j}}{R_{\Omega}} \Big(C_{fm_j} - C_{sj} \Big) \\ \mathcal{E}_p \delta_w \frac{\partial \langle C_w \rangle_j}{\partial t} &= \sum_{m=1}^{S} k_{ci,jm} \Big(C_{ms} - \langle C_w \rangle_m \Big) + \delta_w \sum_{i=1}^{N} \mathcal{V}_{ij} R_i \Big(\langle C_w \rangle_1, \langle C_w \rangle_2 \dots \langle C_w \rangle_s, T_s \Big) \\ k_{ce,j} \Big(C_{fm_j} - C_{sj} \Big) &= k_{ci,j} \Big(C_{sj} - \langle C_{wc} \rangle_j \Big) \qquad k_{ce,j} = \frac{Sh_{e\Omega\infty} D_{m,j}}{R_{\Omega}} \qquad k_{ci,j} = \frac{Sh_{i\Omega\infty} D_{ej}}{\delta_w} \end{split}$$

j=1,2 S (species); N reactions

Joshi, Harold & Balakotaiah., AIChE J., May 2009

+ IC + BCs

Energy balance:

$$\rho_f c_{pf} \frac{\partial T_f}{\partial t} + \langle u \rangle \rho_f c_{pf} \frac{\partial T_f}{\partial x} = -\frac{h}{R_{\Omega}} (T_f - T_s)$$

$$\delta_{s}\rho_{s}c_{ps}\frac{\partial T_{s}}{\partial t} = \delta_{s}k_{s}\frac{\partial^{2}T_{s}}{\partial x^{2}} + h(T_{f} - T_{s}) + \delta_{w}\sum_{j=1}^{M} R_{j}(\langle C_{w}\rangle_{1}, \langle C_{w}\rangle_{2}, \ldots, \langle C_{w}\rangle_{N}, T_{s}) \times (-\Delta H_{j})$$

 $T_{f} = T_{fin}(t) @ x = 0; T_{s}(x,t=0) = T_{s0}(x); T_{f}(x,t=0) = T_{f0}(x); \frac{\partial T_{s}}{\partial x} = 0 @ x = 0, L$

Simulation of Transient Behavior of a TWC with Global Kinetics

$$\begin{aligned} 1. \ CO &+ \frac{1}{2}O_2 \to CO_2 \\ 2. \ H_2 &+ \frac{1}{2}O_2 \to H_2O \\ 3. \ CH_y &+ \frac{4+y}{4}O_2 \to CO_2 + \frac{y}{2}H_2O \\ 4. \ NO &+ CO \to CO_2 + N_2 \\ R_{CO} &= \frac{k_1\hat{X}_{CO}\hat{X}_{O_2}}{F(\hat{X}, T_s)} \\ R_{H_2} &= \frac{k_1\hat{X}_{H_2}\hat{X}_{O_2}}{F(\hat{X}, T_s)} \\ R_{HC} &= \frac{k_3\hat{X}_{HC}\hat{X}_{O_2}}{F(\hat{X}, T_s)} \\ R_{NO} &= \frac{k_4\hat{X}_{1c}^{1/2}\hat{X}_{O_2}^{0/3}\hat{X}_{NO}^{0/13}}{T_s^{-0.17}(T_s + ka_5\hat{X}_{CO})^2} \\ F(\hat{X}, T_s) &= T_s(1 + ka_1\hat{X}_{CO} + ka_2\hat{X}_{HC})^2(1 + ka_3\hat{X}_{CO}^2\hat{X}_{HC}^{0/2})(1 + ka_4\hat{X}_{NO}^{0/7}) \\ k_i &= A_ie^{-\frac{E_i}{T_s}} \quad i = 1, 3, 4 \\ ka_i &= A_{ii}e^{-\frac{E_i}{T_s}} \quad i = 1, -5 \end{aligned}$$

Monolith Temperature

COMSOL SOLUTION

LOW-D MODEL SOLUTION

Joshi , Harold & Balakotaiah, AIChE J., May 2009

Transient simulation showing front end ignition (a) monolith temperature without washcoat diffusion (b) monolith temperature with washcoat diffusion

Demonstration of Real Time Simulation of the Cold-start Behavior of a TWC

Extensions to the low-D models

- Developing flows
- Microkinetics (2 equations for each gas phase species, one eqn. for each surface species)
- Estimation of kinetic parameters from bench scale expts.
- Axial variations of PGM loading
- Transverse variations in temperature (heat losses)
- Other types of catalytic and multi-phase reactors

Overview

Models:

Low-dimensional Models for Real Time Simulations of Catalytic After-treatment Systems

(TWCs, DOCs, LNTs, SCRs and DPFs)

- low-d models for diffusion-convection-reaction
- simulation of TWC cold start behavior in real time
- extensions of low-d models

Analysis:

- **Generic features of monoliths using low-d models**
- (i) Controlling regimes
- (ii) External Mass transfer controlled regime
- (iii) Fronts in monoliths
- (iv) Multiple steady-states and periodic states
- (v) Light-off behavior
- (vi) Bifurcation analysis
- (vii) Microkinetic models vs. global kinetic models

(i) Controlling Regimes

Comparison of various resistances

Criterion for controlling regimes

 $R_r \ge 0.9R_t$ for kinetic regime or reaction controlling $R_e \ge 0.9R_t$ for external mass transfer controlling $R_w \ge 0.9R_t$ for washcoat diffusion controlling

Kinetic Regime-H₂ Oxidation

Kinetics Reference: Bhatia D, Harold MP and Balakotaiah V. Kinetics and bifurcation analysis of cooxidation of CO and H2 in catalytic monolith reactors. Chemical Engineering Science. 2009;64,1544-1558.

Washcoat Diffusion controlling

Parameters

Washcoat diffusion NOT important

(ii) External Mass Transfer Controlled Regime in Monoliths

 $L_{_{\min}} = 4 \frac{R_{_{\Omega}}^{^{2}} \langle u \rangle}{D_{_{m}}}$

Minimum lengths/front widths At 300 C with $R_{\Omega}=0.5$ mm

Species	H2	NO	NH3
<u> = 1 m/s</u>	1.5 mm	6.0 mm	4.5 mm
<u> = 10 m/s</u>	15 mm	60 mm	45 mm

(iii) Analysis of fronts in after-treatment systems

Summary/Conclusions

- Part A: Fundamentals based Low-dimensional Models for Real Time Simulations of Catalytic After-treatment Systems (TWCs, DOCs, LNTs, SCRs and DPFs)
- **Part B:** Analysis of monolith features using low-d models
 - (i) Controlling regimes
 - (ii) External Mass transfer controlled regime
 - (iii) Fronts in monoliths
 - (iv) Multiple steady-states and periodic states
 - (v) Light-off behavior
 - (vi) Bifurcation analysis
 - (vii) Microkinetic models vs. global kinetic models

Funding: DOE-NETL, Ford & BASF