Low-dimensional Models for Real Time Simulations of Catalytic After-treatment Systems

Saurabh Y. Joshi,
Divesh Bhatia
Jin Xu
Michael P. Harold
Vemuri Balakotaiah

Department of Chemical and Biomolecular Engineering
University of Houston, Houston, Texas 77204

CLEERS Workshop
April, 2009

Funding: DOE-NETL, BASF, Ford
LNT/SCR, TWC/DOC & DPF Research at UH

Experiments
- Lean NOx Storage
 - Steady-state lean NOx reduction
- NOx storage & reduction (cycling)

Modeling & Simulation

Kinetic Modeling
- Microkinetics (from TAP)
- Global kinetics

Reactor Modeling
- Isothermal / short monoliths
- Non-isothermal effects

Analysis & Simulation
- Bifurcation analysis
- Parametric studies
- Simulation and Comparison to Expts

Implementation / Optimization of LNTs
- Software development
- Integration of engine & emission controls

Bench-scale reactor studies

Transient kinetics studies (TAP)

Full-Scale Testing

Engines & Controls (ME.)
Ford
BASF
City of Houston

Low-dimensional Models for Control and Optimization
Overview

Part A: Low-dimensional Models for Real Time Simulations of Catalytic After-treatment Systems (TWCs, DOCs, LNTs, SCRs and DPFs)
[Ref: Joshi, Harold and Balakotaiah, AIChE J., May 2009]
• low-d models for diffusion-convection-reaction
• simulation of TWC cold start behavior in real time
• extensions of low-d models

Part B: Analysis of monolith reactors using low-d models
(i) Controlling regimes
(ii) External Mass transfer controlled regime
(iii) Light-off Behavior
(iv) Multiple steady-states and periodic states
(v) Fronts in monoliths
(vi) Bifurcation analysis
(vii) Microkinetic models vs. global kinetic models
Catalytic Monoliths—Multiple Length/Time Scales

Catalytic Converter

Monolith
Radius ~10 cm
Length ~10 cm

Channel Diameter ≈ 1 mm

Washcoat Thickness ≈ 20 µm

Precious Metals (Pt, Rh, Pt/Ba)
Pore Diameter: 10-50 Å
Models of Homogeneous & Catalytic Reactors

Packed-Bed Catalytic Reactor

Homogeneous Tank Reactor

Detailed Model:
\[
C \frac{\partial u}{\partial t} = F(x, u, \nabla u, \nabla^2 u, p); \quad x \text{ in } \Omega, \ t > 0
\]

I.C.: \(\Gamma(x, u, \nabla u, p) = 0 \) in \(\Omega \), \(t = 0 \)

B.C.: \(B(x, u, \nabla u, p) = 0 \) in \(\partial \Omega \), \(t > 0 \)

Ideal CSTR Model:
(Bodenstein & Wolgast, 1908)
\[
\frac{d\overline{C}}{dt} = \frac{1}{\tau}(C_{in} - \overline{C}) - R(\overline{C}); \quad t > 0
\]

I.C.: \(\overline{C}(t = 0) = \overline{C}_0 \)

Objective: Develop accurate low-dimensional models (in terms of average/measurable quantities) *without losing any important physics at small length/time scales.*
Detailed Diffusion-Convection-Reaction Models for Monoliths

Shape Normalized Diffusion Lengths

\[R_\Omega = \frac{A_{\Omega_1}}{P_\Omega} \]

\[\delta_w = \frac{A_{\Omega_2}}{P_\Omega} \]

Steady State Balance Equations

Convection

\[\frac{\partial C_f}{\partial t} + u(x', y') \frac{\partial C_f}{\partial z'} = D_m \left(\nabla^2 C_f + \frac{\partial^2 C_f}{\partial z'^2} \right), \quad (x', y') \in \Omega_1 \]

Diffusion

\[\frac{\partial C_f}{\partial t} = \frac{\partial C_s}{\partial t} + R(C_s) = D_m \left(\nabla^2 C_f + \frac{\partial^2 C_s}{\partial z'^2} \right), \quad (x', y') \in \Omega_2 \]

Reaction

\[\varepsilon_p \frac{\partial C_s}{\partial t} + R(C_s) = D_m \left(\nabla^2 C_s + \frac{\partial^2 C_s}{\partial z'^2} \right), \quad (x', y') \in \Omega_2 \]

Boundary Conditions

\[n.D_m \nabla . C_f = n.D_e \nabla . C_s \]

\[C_f = C_s \]

\[n.D_e \nabla . C_s = 0, \quad (x', y') \in \partial \Omega_2 \]

Coupled PDEs in \((x', y', z')\)
Traditional Low-dimensional Models for Catalytic Reactor Models

Pseudo-homogeneous PFR model

\[
\frac{\partial c}{\partial t} + \bar{u} \frac{\partial c}{\partial x} + R(c) = 0; \quad 0 < x < L, \quad t > 0 \quad \text{B.C.} \quad c(0,t) = c_{in}(t), \quad \text{I.C.} \quad c(x,0) = c_o(x)
\]

Two-phase model for a packed-bed reactor \((\text{Wicke, 1960; Liu & Amundson, 1963}) \)

\[
\varepsilon_f \frac{\partial c_f}{\partial t} + \bar{u} \frac{\partial c_f}{\partial x} = -k_c a_v (c_f - c_s); \quad 0 < x < L, \quad t > 0 \quad \text{B.C.} \quad c_f(0,t) = c_{f,in}(t)
\]

\[
(I - \varepsilon_f) \frac{\partial c_s}{\partial t} = k_c a_v (c_f - c_s) - R(c_s); \quad t > 0 \quad \text{I.C.} \quad c_s(x,0) = c_{so}(x)
\]

Catalytic Reactor Model with Dispersion and Mass Transfer Coefficients

\[
\varepsilon_f \frac{\partial c_f}{\partial t} + \bar{u} \frac{\partial c_f}{\partial x} = D_{ef} \frac{\partial^2 c_f}{\partial x^2} - k_c a_v (c_f - c_s); \quad 0 < x < L, \quad t > 0 \quad \text{B.C. 1} \quad D_{ef} \frac{\partial c_f}{\partial x} = \bar{u} [c_f(0,t) - c_{f,in}(t)]
\]

\[
(I - \varepsilon_f) \frac{\partial c_s}{\partial t} = k_c a_v (c_f - c_s) - R(c_s); \quad t > 0 \quad \text{B.C. 2} \quad \frac{\partial c_f}{\partial x} = 0
\]

Catalytic Reactor Model with Dispersion, Mass Transfer Coefficients & Intra-particle diffusion

\[
(I - \varepsilon_f) \frac{\partial c_s}{\partial t} = k_c a_v (c_f - c_s) - R(c_s) \eta; \quad t > 0
\]

\[
\nabla (D_e \nabla c) = R(c) \quad \text{in } \Omega; \quad c = c_s \text{ on } \partial \Omega; \quad \eta = \frac{1}{V_\Omega} \int_{\Omega} R(c) d\Omega / R(c_s)
\]
Detailed Diffusion-Convection-Reaction Models for Monoliths

\[\Omega \]

\[\partial \Omega \]

\[\Omega_1 \]

\[\Omega_2 \]

\[\partial \Omega_1 \]

Shape Normalized Diffusion Lengths

\[R_\Omega = \frac{A_{\Omega_1}}{P_\Omega} \]

\[\delta_w = \frac{A_{\Omega_2}}{P_\Omega} \]

fluid

washcoaevt

interfacial coupling

Steady State Balance Equations

\[\frac{\partial C_f}{\partial t} + u(x', y') \frac{\partial C_f}{\partial z'} = D_m \left(\nabla_z^2 C_f + \frac{\partial^2 C_f}{\partial z'^2} \right), (x', y') \in \Omega_1 \]

\[\text{convection} \]

\[\text{diffusion} \]

\[\varepsilon_p \frac{\partial C_s}{\partial t} + R(C_s) = D_e \left(\nabla_z^2 C_s + \frac{\partial^2 C_s}{\partial z'^2} \right), (x', y') \in \Omega_2 \]

\[\text{reaction} \]

\[\text{diffusion} \]

Coupled PDEs in \((x', y', z')\)

Boundary Conditions

\[n.D_m \nabla.C_f = n.D_e \nabla.C_s \]

\[C_f = C_s \]

\[(x', y') \in \partial \Omega_1 \]

\[n.D_e \nabla.C_s = 0, (x', y') \in \partial \Omega_2 \]

\[D_m \frac{\partial C_f}{\partial z'} = u(x', y')(C_f - C_{in}(t)) & \frac{\partial C_s}{\partial z'} = 0, z' = 0 \]

\[\frac{\partial C_f}{\partial z'} = \frac{\partial C_s}{\partial z'} = 0, z' = L \]
Diffusion is dominant at small length scales

Local Diffusion operator of the CDR equation (with a periodic/Neumann & Robin BCs) has a zero eigenvalue with a constant eigenfunction.

Spatial degrees of freedom (small length scales) can be eliminated near the zero eigenvalue (small parameter).

Procedure:

- Write the detailed (microscopic) model
- Identify the smallest length/time scale (expressed in terms of a small parameter, say p)
- Express all other parameters (λ_i) as $\lambda_i = \alpha_i p^n$, where α_i is $O(1)$ & $n = 1, 0, -1, \ldots$
- Apply the L-S reduction (eliminate spatial degrees of freedom)
Concentration Modes

\[C_{fm} = \frac{\int_{\Omega_1} u(x, y) C_f(x, y) \, d\Omega}{\int_{\Omega_1} u(x, y) \, d\Omega} = \text{cup-mixing concentration} \]

\[< C_f > = \frac{\int_{\Omega_1} C_f(x, y) \, d\Omega}{\int_{\Omega_1} d\Omega} = \text{average concentration in fluid} \]

\[C_s = \frac{\int_{\partial\Omega_1} C_1(x, y) \, d\Gamma}{\int_{\partial\Omega_1} d\Gamma} = \frac{\int_{\partial\Omega_1} C_2(x, y) \, d\Gamma}{\int_{\partial\Omega_1} d\Gamma} \]

\[\langle C_{wc} \rangle = \frac{\int_{\Omega_2} C_2(x, y) \, d\Omega}{\int_{\Omega_2} d\Omega} = \frac{1}{A_{\Omega_2}} \int_{\Omega_2} C_2(x, y) \, d\Omega \]
On the Relationship Between Aris and Sherwood Numbers and Friction and Effectiveness Factors

(i) Concept of an internal mass transfer coefficient:

\[k_{ci} = \frac{1}{A_{\Omega'}} \int_{A_{\Omega'}} D_e \nabla C \cdot n \, dS }{(C_s - \langle C \rangle)} \]

Flux, \(j = k_{ci} (C_s - \langle C \rangle) \)

Sherwood number, \(Sh_{\Omega} = k_{ci} R_{\Omega} \frac{D_e}{D_e} \)

(ii) Effectiveness factor:

\[\eta = \frac{\langle r(C) \rangle}{r(C_s)} = \frac{\langle C \rangle}{C_s} \text{ (for linear kinetics)} \]

(iii) Aris numbers:

\[\eta = 1 - A_{r_1} \Phi^2 + A_{r_2} \Phi^4 - ... \]

\[\eta = \frac{1}{1 + \frac{\Phi^2}{Sh_{\Omega}}} \]

(iv) Friction factors for viscous flow in a duct (2-D):

\[\frac{f \, Re}{8} = Sh_{\Omega_{\infty}} = \frac{1}{A_{r_1}} ; \quad Re = \frac{4 R_{\Omega} \langle u \rangle}{\nu} \]

(i) Low-dimensional Model for Multicomponent Nonlinear Diffusion-Reaction Problems
(ii) Low-dimensional Models for Diffusion-Convection-Reaction Problems

Low-Dimensional Models for Diffusion-Reaction Problems

The Internal Diffusion-Reaction Problem in a Porous Catalyst

\[\varepsilon_p \frac{\partial C}{\partial t'} = \nabla \cdot (D_c \nabla C) - R(C); \quad (x', y', z') \in \Omega', t' > 0 \]

\[C = C_s(t'); \quad \text{on } \partial \Omega'. \]

\[C = C_i(x', y', z') \quad \text{at } t' = 0 \]

Volume averaged concentration in particle

\[\langle C \rangle(t') = \frac{1}{V_{\Omega'}} \int_{\Omega'} C(x', y', z', t') d\Omega' \]

\[C = \langle C \rangle + C' \]

\[\langle C' \rangle = 0 \]

\[\langle R(\langle C \rangle + C') \rangle = R(\langle C \rangle) + O(C')^2 \]

Low-Dimensional Model

\[\varepsilon_p V_{\Omega'} \frac{d\langle C \rangle}{dt'} = A_{\Omega'} k_{ci} (\overline{C_s(t')} - \langle C \rangle) - V_{\Omega'} R(\langle C \rangle) \]

\[\langle C \rangle = \langle C_i \rangle \quad \text{at } t' = 0, \]
Three-mode Model for an Isothermal Monolith ($L/d_h >> 1$)

\[
\frac{\partial C_{fm}}{\partial t} + \langle u \rangle \frac{\partial C_{fm}}{\partial x} = -\frac{k_{ce}}{R_\Omega} (C_{fm} - C_s)
\]

\[
\varepsilon_p \delta_w \frac{\partial \langle C_w \rangle}{\partial t} = k_{ci} (C_s - \langle C_w \rangle) + \delta_w R(\langle C_w \rangle)
\]

\[
k_{ce} (C_{fm} - C_s) = k_{ci} (C_s - \langle C_w \rangle)
\]

Two-Mode form:

\[
\frac{\partial C_{fm}}{\partial t} + \langle u \rangle \frac{\partial C_{fm}}{\partial x} = -\frac{k_{mo}}{R_\Omega} (C_{fm} - \langle C_w \rangle)
\]

\[
\varepsilon_p \delta_w \frac{\partial \langle C_w \rangle}{\partial t} = k_{mo} (C_{fm} - \langle C_w \rangle) - \delta_w R(\langle C_w \rangle)
\]

\text{IC1: } C_{fm}(x,t=0) = C_{m0}(x)

\text{IC2: } \langle C_w \rangle(x,t=0) = \langle C_{w0} \rangle(x)

\text{BC: } C_{fm} = C_{in}(t) @ x = 0

\[
k_{ci} = \frac{Sh_i \Omega D_e}{\delta_w} \quad k_{ce} = \frac{Sh_e \Omega D_m}{R_\Omega}
\]

\[
\frac{1}{k_{mo}} = \frac{1}{k_{ci}} + \frac{1}{k_{ce}}
\]

\[
= \frac{\delta_w}{Sh_i \Omega D_e} + \frac{R_\Omega}{Sh_e \Omega D_m}
\]

\[
\approx \frac{\delta_w}{Sh_i \Omega \infty D_e} + \frac{R_\Omega}{Sh_e \Omega \infty D_m}
\]
Analogy between internal and external mass transfer coefficients
\[\nabla^2 c = g(x', y')\phi^2 c \quad (x', y') \in \Omega_2 \quad n_{\Omega_2} \cdot \nabla c = 0 \quad \text{on} \ \partial \Omega_2 \quad c = 1 \quad \text{on} \ \partial \Omega_1 \]

\[
k_{mi} = \frac{\int_{A_{\Omega_2}} R(C) \, dA}{P_{\Omega} \left(C_s - \langle C \rangle \right)} \quad Sh_i = \frac{k_{mi} R_{\Omega}}{D_e} \quad Sh_i = Sh_{i,\infty} + \frac{\Lambda \phi^2}{1+\Lambda \phi}
\]

Sh_i for some common geometries

<table>
<thead>
<tr>
<th>Channel Shape</th>
<th>$Sh_{i\infty}$ and Λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure a</td>
<td>$Sh_{i\infty} = 3$ and $\Lambda = 0.32$</td>
</tr>
<tr>
<td>R_2/R_1</td>
<td>$Sh_{i\infty}$</td>
</tr>
<tr>
<td>1.01</td>
<td>3.0125</td>
</tr>
<tr>
<td>1.1</td>
<td>3.153</td>
</tr>
<tr>
<td>1.2</td>
<td>3.311</td>
</tr>
<tr>
<td>Figure b</td>
<td>a/R</td>
</tr>
<tr>
<td>1</td>
<td>0.826</td>
</tr>
<tr>
<td>1.1</td>
<td>1.836</td>
</tr>
<tr>
<td>1.2</td>
<td>2.533</td>
</tr>
<tr>
<td>Figure c</td>
<td>a/R</td>
</tr>
<tr>
<td>1.7321</td>
<td>0.84</td>
</tr>
<tr>
<td>1.9245</td>
<td>1.45</td>
</tr>
<tr>
<td>2.4744</td>
<td>2.92</td>
</tr>
<tr>
<td>Figure d</td>
<td>b/a</td>
</tr>
<tr>
<td>1.11</td>
<td>5</td>
</tr>
<tr>
<td>1.25</td>
<td>10</td>
</tr>
<tr>
<td>Figure f</td>
<td>a/R</td>
</tr>
<tr>
<td>1.155</td>
<td>0.814</td>
</tr>
<tr>
<td>1.17</td>
<td>1.16</td>
</tr>
<tr>
<td>1.2</td>
<td>1.74</td>
</tr>
</tbody>
</table>

Joshi SY, Harold MP and Balakotaiah V. On the use of internal mass transfer coefficients in modeling of diffusion and reaction in catalytic monoliths. Chemical Engineering Science (in review)
Three-mode Model for an Isothermal Monolith \((L/d_h \gg 1)\)

\[
\frac{\partial C_{fm}}{\partial t} + \langle u \rangle \frac{\partial C_{fm}}{\partial x} = - \frac{k_{ce}}{R_\Omega} (C_{fm} - C_s)
\]

\[
\varepsilon_p \delta_w \frac{\partial \langle C_w \rangle}{\partial t} = k_{ci} (C_s - \langle C_w \rangle) + \delta_w R(\langle C_w \rangle)
\]

\[
k_{ce} (C_{fm} - C_s) = k_{ci} (C_s - \langle C_w \rangle)
\]

Two-Mode form:

\[
\frac{\partial C_{fm}}{\partial t} + \langle u \rangle \frac{\partial C_{fm}}{\partial x} = - \frac{k_{mo}}{R_\Omega} (C_{fm} - \langle C_w \rangle)
\]

\[
\varepsilon_p \delta_w \frac{\partial \langle C_w \rangle}{\partial t} = k_{mo} (C_{fm} - \langle C_w \rangle) - \delta_w R(\langle C_w \rangle)
\]

IC1: \(C_{fm}(x,t=0) = C_{m0}(x)\)

IC2: \(\langle C_w \rangle(x,t=0) = \langle C_{w0} \rangle(x)\)

BC: \(C_{fm} = C_{in}(t) \at x=0\)

\[
k_{ci} = \frac{Sh_i \Omega D_e}{\delta_w} \quad k_{ce} = \frac{Sh_e \Omega D_m}{R_\Omega}
\]

\[
\frac{1}{k_{mo}} = \frac{1}{k_{ci}} + \frac{1}{k_{ce}}
\]

\[
= \frac{\delta_w}{Sh_i \Omega D_e} + \frac{R_\Omega}{Sh_e \Omega D_m}
\]

\[
\approx \frac{\delta_w}{Sh_i \Omega \infty D_e} + \frac{R_\Omega}{Sh_e \Omega \infty D_m}
\]
Comparison of Accuracy of Low-D Model for Linear Kinetics, Single Reaction and Isothermal Case:

Circular channel with uniform washcoat thickness

Low-Dimensional Model for Multi-component DCR Problem:

Species conservation:

\[
\frac{\partial C_{fmj}}{\partial t} + \langle u \rangle \frac{\partial C_{fmj}}{\partial x} = - \frac{k_{ce,j}}{R_\Omega} \left(C_{fmj} - C_{sj} \right)
\]

\[
\varepsilon_p \delta_w \frac{\partial \langle C_w \rangle_j}{\partial t} = \sum_{m=1}^{s} k_{ci,jm} \left(C_{ms} - \langle C_w \rangle_m \right) + \delta_w \sum_{i=1}^{N} v_i R_i \left(\langle C_w \rangle_1, \langle C_w \rangle_2, \ldots, \langle C_w \rangle_S, T_s \right)
\]

\[
k_{ce,j} \left(C_{fmj} - C_{sj} \right) = k_{ci,j} \left(C_{sj} - \langle C_{wc} \rangle_j \right)
\]

\[
k_{ce,j} = \frac{S_h \Omega \infty D_{m,j}}{R_\Omega}, \quad k_{ci,j} = \frac{S_h \Omega \infty D_{ej}}{\delta_w}
\]

\[j=1,2 \ldots, S \text{ (species)}; \quad N \text{ reactions}\]

Energy balance:

\[
\rho_f c_{pf} \frac{\partial T_f}{\partial t} + \langle u \rangle \rho_f c_{pf} \frac{\partial T_f}{\partial x} = - \frac{h}{R_\Omega} \left(T_f - T_s \right)
\]

\[
\delta' \rho_s c_{ps} \frac{\partial T_s}{\partial t} = \delta' k_s \frac{\partial^2 T_s}{\partial x^2} + h \left(T_f - T_s \right) + \delta w \sum_{j=1}^{M} R_j \left(\langle C_w \rangle_1, \langle C_w \rangle_2, \ldots, \langle C_w \rangle_N, T_s \right) \times \left(- \Delta H \right)
\]

\[T_f = T_{fin}(t) \text{ @ } x = 0; \quad T_s(x,t=0) = T_{s0}(x); \quad T_f(x,t=0) = T_{f0}(x); \quad \frac{\partial T_s}{\partial x} = 0 \text{ @ } x = 0, L\]
Simulation of Transient Behavior of a TWC with Global Kinetics

1. \(CO + \frac{1}{2}O_2 \rightarrow CO_2 \)

2. \(H_2 + \frac{1}{2}O_2 \rightarrow H_2O \)

3. \(CH_y + \frac{4+y}{4}O_2 \rightarrow CO_2 + \frac{y}{2}H_2O \)

4. \(NO + CO \rightarrow CO_2 + N_2 \)

\[
R_{CO} = \frac{k_1 \dot{X}_{CO} \dot{X}_{O_2}}{F(X, T_s)}
\]

\[
R_{H_2} = \frac{k_1 \dot{X}_{H_2} \dot{X}_{O_2}}{F(X, T_s)}
\]

\[
R_{HC} = \frac{k_3 \dot{X}_{HC} \dot{X}_{O_2}}{F(X, T_s)}
\]

\[
R_{NO} = \frac{k_4 \dot{X}_{CO}^{1.4} \dot{X}_{O_2}^{0.3} \dot{X}_{NO}^{0.13}}{T_s^{-0.17}(T_s + k\alpha_5 \dot{X}_{CO})^2}
\]

\[
\Gamma(\dot{X}, T_s) = T_s(1 + k\alpha_1 \dot{X}_{CO} + k\alpha_2 \dot{X}_{HC})^2(1 + k\alpha_3 \dot{X}_{CO}^2 \dot{X}_{HC}^2)(1 + k\alpha_4 \dot{X}_{NO}^{0.7})
\]

\[
k_i = A_i e^{-\frac{E_i}{T_s}} \quad i = 1, 3, 4
\]

\[
k\alpha_i = A_{ii} e^{-\frac{E_{i\alpha}}{T_s}} \quad i = 1 - 5
\]
Monolith Temperature

COMSOL SOLUTION

LOW-D MODEL SOLUTION

Joshi, Harold & Balakotaiah,
AIChE J., May 2009
Transient simulation showing front end ignition (a) monolith temperature without washcoat diffusion (b) monolith temperature with washcoat diffusion.
Demonstration of Real Time Simulation of the Cold-start Behavior of a TWC

Extensions to the low-D models

• Developing flows
• Microkinetics (2 equations for each gas phase species, one eqn. for each surface species)
• Estimation of kinetic parameters from bench scale expts.
• Axial variations of PGM loading
• Transverse variations in temperature (heat losses)
• Other types of catalytic and multi-phase reactors
Overview

Models:
Low-dimensional Models for Real Time Simulations of Catalytic After-treatment Systems (TWCs, DOCs, LNTs, SCR and DPFs)
• low-d models for diffusion-convection-reaction
• simulation of TWC cold start behavior in real time
• extensions of low-d models

Analysis:
Generic features of monoliths using low-d models
(i) Controlling regimes
(ii) External Mass transfer controlled regime
(iii) Fronts in monoliths
(iv) Multiple steady-states and periodic states
(v) Light-off behavior
(vi) Bifurcation analysis
(vii) Microkinetic models vs. global kinetic models
(i) Controlling Regimes

Comparison of various resistances

$$\frac{1}{k_{\text{app}}} = \frac{1}{k_{\text{me}}} + \frac{1}{k_{\text{mi}}} + \frac{1}{kR_{\Omega_2}}$$

Total Resistance (R_t) = External Resistance (R_e) + Internal (Washcoat) Resistance (R_w) + Reaction Resistance (R_r)

Criterion for controlling regimes

- $R_r \geq 0.9R_t$ for kinetic regime or reaction controlling
- $R_e \geq 0.9R_t$ for external mass transfer controlling
- $R_w \geq 0.9R_t$ for washcoat diffusion controlling
Kinetic Regime-H$_2$ Oxidation

Kinetics and Parameters

$R_{\Omega_1} = 0.5 \text{ mm}$, $R_{\Omega_2} = 20 \mu\text{m}$, $L = 7 \text{ cm}$, $\langle u \rangle = 1 \text{ m/s}$

$$ R = \frac{1.1835 \times 10^7}{T_s} \exp\left(-\frac{1046.4}{T_s}\right) C_{H_2} $$

Washcoat Diffusion controlling

Parameters

\(R_{\Omega_1} = 0.5 \text{ mm} \), \(R_{\Omega_2} = 50 \text{ \mu m} \), \(D_e = 10^{-9} \text{ m}^2 / \text{s} \), \(L = 7 \text{ cm} \), \(\langle u \rangle = 1 \text{ m} / \text{s} \), PGM Loading = 10 g / ft³
Washcoat diffusion NOT important

\[R_{\Omega_1} = 0.5 \, mm, \quad R_{\Omega_2} = 10 \, \mu m, \quad D_e = 10^{-6} \, m^2 / s, \quad L = 7 \, cm, \quad \langle u \rangle = 1 \, m / s, \quad PGM \, Loading = 50 \, g / ft^3 \]
(ii) External Mass Transfer Controlled Regime in Monoliths

\[R_\Omega = \frac{A_\Omega}{P_\Omega} \]

\[\frac{C_{Af}}{C_{A0}} = \alpha_1 \text{Exp} \left[-\frac{\mu_1}{P} \right] \]

\[\mu_1 = \frac{Sh_r}{4} \quad P = \frac{R_\Omega^2 \langle u \rangle}{LD_m} \]

\[L_{\text{min}} = 4 \frac{R_\Omega^2 \langle u \rangle}{D_m} \]

Minimum lengths/front widths

At 300°C with \(R_\Omega = 0.5 \text{mm} \)

<table>
<thead>
<tr>
<th>Species</th>
<th>H2</th>
<th>NO</th>
<th>NH3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle u \rangle = 1 \text{ m/s})</td>
<td>1.5 mm</td>
<td>6.0 mm</td>
<td>4.5 mm</td>
</tr>
<tr>
<td>(\langle u \rangle = 10 \text{ m/s})</td>
<td>15 mm</td>
<td>60 mm</td>
<td>45 mm</td>
</tr>
</tbody>
</table>
(iii) Analysis of fronts in after-treatment systems

Observations:

(i) Front speeds are independent of kinetics
(ii) Front concentrations must satisfy stoichiometric relations

Adsorption/storage/Regeneration:

\[
u_f = \langle u \rangle \frac{R}{\delta} \left(\frac{C_{A,in}}{vN_{so}} \right)
\]

Thermal (front end ignition):

\[
u_f = \langle u \rangle \frac{R}{\delta} \left(\frac{\rho_{g} c_{pt}}{\rho_{s} c_{ps}} \right)
\]

NO\textsubscript{x} Storage on Pt/Ba catalyst

\[NO + \frac{1}{2}O_2 \leftrightarrow NO_2\]

\[BaO + 3NO_2 \leftrightarrow Ba(NO_3)_2 + NO\]

NO\textsubscript{x} Reduction on Pt/Ba catalyst

\[Ba(NO_3)_2 + 8H_2 \rightarrow BaO + 5H_2O + 2NH_3\]

\[Ba(NO_3)_2 + \frac{10}{3}NH_3 \rightarrow BaO + 5H_2O + \frac{8}{3}N_2\]
Summary/Conclusions

Part A: Fundamentals based
Low-dimensional Models for Real Time Simulations of Catalytic After-treatment Systems (TWCs, DOCs, LNTs, SCRs and DPFs)

Part B: Analysis of monolith features using low-d models
(i) Controlling regimes
(ii) External Mass transfer controlled regime
(iii) Fronts in monoliths
(iv) Multiple steady-states and periodic states
(v) Light-off behavior
(vi) Bifurcation analysis
(vii) Microkinetic models vs. global kinetic models

Funding: DOE-NETL, Ford & BASF