An Analysis of DISI Particle Morphology

Teresa Barone, John Storey, Jim Szybist, Adam Youngquist

Fuels, Engines, and Emissions Research Center

Acknowledgement Dr. James Eberhardt, U.S. DOE, VT

May 1, 2012

DISI Vehicle Particle Emissions

DISI particle number concentration emissions greater than that for PFI and CI-DPF vehicles (Mathis et al., 2005)

Soot and volatile nanoparticles present in DISI exhaust (Mathis et al., 2004)

2 Managed by UT-Battelle for the U.S. Department of Energy

Background: Conventional Diesel & PCCI

 Primary particle diameter range: 20 – 25 nm

mode	mobility diameter (nm)	d _{pp} (nm)
conven- tional	50	24 ± 3
	100	22 ± 4
	150	25 ± 4
PCCI	50	23 ± 4
	100	20 ± 2
150 nm	150	21 ± 3

Energy & Fuels Barone et al. (2011)

1500 rpm, 2.6 bar

Comparison of Conventional Diesel Particle Studies

• Neer and Koylu (2006)

Comparison of diesel soot properties from TEM measurements

Study	Diesel engine type	Method	d̄p (nm)
Present study	6-cylinder engine, various loads and speeds	TEM	20–35
Zhu et al. [13]	Light-duty engine, various loads and speeds	TEM	19–33
Park et al. [11] ^a	4-cylinder engine, single operating condition	TEM	32
Wentzel et al. [8] ^b	Unknown engine, single operating condition	TEM	23
Lee et al. [12]	Heavy-duty engine, four operating conditions	TEM	28–34

19 – 35 nm

Sampling and Analysis Methods

- Early Fuel Injection 320 DBTDC
- Fuel Injection for Low PN 280 DBTDC

Particle Collection for TEM Analysis

Fierz, Kaegi and Burtcher (2007) University of Applied Sciences Northwestern Switzerland

Uniform collection across substrate Optimized sampling time Sampling efficiency vs. particle size

6 Managed by UT-Battelle for the U.S. Department of En

Aggregate Image Analysis

• Xiong and Friedlander (2001)

Atmospheric, 2006, *J. Nanoparticle Research* Diesel & PCCI, 2011, *Energy and Fuels*

7 Managed by UT-Battelle for the U.S. Department of Energy

DISI and Conventional Diesel Size Distributions

Early Injection Particle Morphology

- E20, DI320 BTDC, 1500 rpm/8 bar, Engine-out
- 2-stage dilution with evaporator tube, DR=30

Large variation primary particle diameter – Greater range than for diesel aggregates

– Heterogeneous fuel/air mixing

Early Injection Particle Morphology

- Liquid droplets abundant
 - Condensation of unburned fuel and lube
 - Possible fuel impingement from early injection

Scale bar 200 nm

E20, DI320 BTDC, 1500 rpm/8 bar, Engine-out 2-stage dilution with evaporator tube, DR=30

Fuel Injection for Minimum PN

- Peak primary diameters smaller than early injection but still wide range
- Fewer unburned fuel/oil droplets
 - Less impingement on cylinder since later injection

Fuel Injection for Minimum PN

 Presence of large and small primary particles indicates heterogeneous mixing

Both images have same magnification

12 Managed by UT-Battelle for the U.S. Department of Energy E20, DI280 BTDC, 1500 rpm/8 bar, Engine-out 2-stage dilution with evaporator tube, DR=30

Fuel Injection for Minimum PN

 Single solid nanoparticles (~10 nm) smaller than E.U. particle number regulation limit (23 nm)

13 Managed by UT-Battelle for the U.S. Department of Energy E20, DI280 BTDC, 1500 rpm/8 bar, Engine-out 2-stage dilution with evaporator tube, DR=30

Nanoparticles Can Penetrate to Alveolar Region

Adapted from Heyder (2004)

International Commission on Radiological Protection Model

Toxicity of 15, 30 & 55 nm Silver Particles

• Rat alveolar macrophages exposed for 24 hr to agglomerates

Carlson et al. (2008)

Mitochondrial Function

Reactive Oxygen Species

Inner membrane damage,* permeability transition (PT) pore opening,* energy failure,* apoptosis,* apo-necrosis, cytotoxicity Phase II enzyme induction, inflammation, mitochondrial perturbation*

National Laboratory

Relative Number of Surface Molecules Inversely Related to Particle Size

16 Managed by UT-Battelle for the U.S. Department of Energy

Morphology Comparison for Injection Strategies

	Early – DI 320	Minimum PN – DI 280
Single Spheres	8%	21%
Aggregates	67%	78%
Droplets	25%	1%
Irregular	1%	-

- Injection for minimum PN generated fewer droplets and more single solid spheres than early injection
- Dependence of collection efficiency on particle size not reflected in this data

Idealized Aggregate Theory

- Derived by equating migration velocity of an aggregate and sphere
- Relates primary particle diameter (d_{pp}) and number of primary particles (N_p) to mobility diameter (d_m)

- Lall and Friedlander (2006)

$$\frac{d_m}{C(d_m)} = \frac{c^* N_p d_{pp}^2}{12 \pi \lambda}$$

- d_m = Mobility diameter
- d_{pp} = Primary particle diameter
- N_p = Number of primary particles
- $\dot{\lambda}$ = Gas mean free path
- $C(d_m) =$ Slip correction factor
 - c* = Dimensionless drag force that depends on aggregate orientation
- Assumes most primary particles exposed to collisions with surrounding gas molecules ($D_f < -2$)

Projected Area Equivalent Diameter

Direct-injection spark-ignition

Projected area

Rogak, Flagan & Nguyen (1993)

4-cylinder, 1.9 L engine E20 fuel 280 DBTDC injection

Other supporting studies Park et al. (2004) Ku & Maynard (2005) Chakrabarty et al. (2007)

Charging Efficiency for Aggregates and Spheres

- Unipolar diffusion charger (Shin et al., 2010)
 - Difference between aggregate and sphere charging efficiency increases with increasing electrical mobility diameter.

20 Managed by UTfor the U.S. Dep

Particle Collection Efficiency

- Aerosol concentration calculation
 - Analyzed 112 particles at 81K magnification
 - Estimated aggregate mobility diameter using IA theory and projected area
 - Extrapolated to area of TEM grid (3.05 mm diameter)
 - Calculated collection efficiency from power law calibration curve

SMPS & TEM Size Distributions: 10 - 50nm

Conclusions

- Wide primary particle diameter range
 - 7 to 60 nm
 - Indicative of heterogeneous fuel and air mixing
 - Other speed and load points should be examined
- Small primary size relative to diesel for minimum PN injection point
 - 10 to 15 nm
 - Fuel and air mixing enhanced in some zones
- Presence of single solid particles smaller than 23 nm
 - TEM number concentration data consistent with SMPS for this size range
 - May be of health concern since can deposit in alveolar region and have greater percent surface area

