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DISI Vehicle Particle Emissions

DISI particle number concentration emissions greater than 
that for PFI and CI-DPF vehicles (Mathis et al., 2005)

Soot and volatile nanoparticles present in DISI exhaust (Mathis et al., 2004)



3 Managed by UT-Battelle
for the U.S. Department of Energy

Background: Conventional 
Diesel & PCCI

•
 

Primary particle diameter 
range: 20 – 25 nm

Energy & Fuels
Barone

 

et al. (2011)

1500 rpm, 2.6 bar
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Comparison of 
Conventional 
Diesel Particle 
Studies

•
 

Neer and Koylu (2006)

Primary size range over 
several studies: 

19 –

 

35 nm
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Sampling and Analysis Methods

Steady-State
• 1500 rpm, 8 bar BMEP

E20 Fuel
• Early Fuel Injection – 320 DBTDC
• Fuel Injection for Low PN – 280 DBTDC

DISI Engine
4-Cylinder
2.0 L

DOC

Stage 1
Overall DR ~ 30

TEM
sampler

3080
DMA3025

CPC

Evap. Tube Stage 2
350 C150 C 45 C
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Particle Collection for TEM Analysis

Charger:
Unipolar

 

Diffusion

Collector:
Electrostatic precipitator

Uniform collection across substrate
Optimized sampling time
Sampling efficiency vs. particle size

Fierz, Kaegi and Burtcher (2007)
University of Applied 
Sciences Northwestern 
Switzerland

23 cm
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Aggregate Image Analysis
•

 
Xiong and Friedlander (2001)

Df = 1.69
R2 = 0.996
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Atmospheric, 2006, J. Nanoparticle Research
Diesel & PCCI, 2011, Energy and Fuels
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2D Graph 4
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DISI Injection for Minimum PN
DISI Early Injection
Conventional Diesel

1500 rpm, 8 bar

DISI and Conventional Diesel                 
Size Distributions

•
 

Difference between    
peak and 10 nm 
particle 
concentration 
greater for diesel

10 nm range solid or volatile?
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Early Injection           
Particle Morphology

9 nm

40 nm

Primary Particle Diameter (nm)
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•

 

E20, DI320 BTDC, 1500 rpm/8 bar, Engine-out

•

 

2-stage dilution with evaporator tube, DR=30

Large variation 
primary particle 
diameter                         
– Greater range 
than for diesel 
aggregates 
– Heterogeneous 
fuel/air mixing

Total analyzed
56 aggregates
1071 primary
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Early Injection 
Particle Morphology

•
 

Liquid droplets abundant
–

 

Condensation of unburned fuel and lube
–

 

Possible fuel impingement from early 
injection

Droplet Diameter (nm)
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Scale bar 200 nm E20, DI320 BTDC, 1500 rpm/8 bar, Engine-out 
2-stage dilution with evaporator tube, DR=30

Total analyzed 
20 Droplets
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Fuel Injection for Minimum PN 

•
 

Peak primary diameters smaller than early injection but still wide range 
•

 
Fewer unburned fuel/oil droplets
–

 

Less impingement on cylinder since later injection

Primary Particle Diameter (nm)
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E20, DI280 
BTDC 1500 
rpm/8 bar 
Engine-out 

2-stage 
dilution with 
evaporator 
tube, DR=30

Total analyzed
121 aggregates

1992 primary
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Fuel Injection for Minimum PN

•
 

Presence of large and small primary particles indicates 
heterogeneous mixing

Both images have same magnification

E20, DI280 BTDC, 1500 rpm/8 bar, Engine-out 
2-stage dilution with evaporator tube, DR=30
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Fuel Injection for Minimum PN

•
 

Single solid nanoparticles (~10 nm) smaller than E.U. particle 
number regulation  limit (23 nm)

10 nm

E20, DI280 BTDC, 1500 rpm/8 bar, Engine-out 
2-stage dilution with evaporator tube, DR=30
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33 particles
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Nanoparticles Can Penetrate to 
Alveolar Region

International Commission on Radiological Protection Model Adapted 
from 
Heyder 
(2004)

International 
Commission 
on Radiological 
Protection 
Model
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Toxicity of 15, 30 & 55 nm Silver Particles
•

 

Rat alveolar macrophages exposed for 24 hr to agglomerates

Mitochondrial Function Reactive Oxygen Species

Carlson et al. (2008)
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Relative Number of Surface Molecules 
Inversely Related to Particle Size

Published by AAAS

A. Nel et al. Science 2006;311:622-627
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Morphology Comparison for Injection 
Strategies

Early – DI 320 Minimum PN – DI 280

Single Spheres 8% 21%

Aggregates 67% 78%

Droplets 25% 1%

Irregular 1% -

•
 

Injection for minimum PN generated fewer droplets and more 
single solid spheres than early injection

•
 

Dependence of collection efficiency on particle size not reflected 
in this data
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Idealized Aggregate Theory

•
 

Derived by equating migration velocity of an aggregate and sphere

•
 

Relates primary particle diameter (dpp ) and number of primary 
particles (Np ) to mobility diameter (dm )
–

 
Lall and Friedlander (2006)

•
 

Assumes most primary particles exposed to collisions with 
surrounding gas molecules (Df < ~2)

12)(

2*
ppp

m

m dNc
dC

d


dm

 

= Mobility diameter
dpp

 

= Primary particle diameter
Np

 

= Number of primary particles
λ

 

= Gas mean free path
C(dm

 

)

 

= Slip correction factor
c*

 

= Dimensionless drag force that           
depends on aggregate orientation



19 Managed by UT-Battelle
for the U.S. Department of Energy

Projected Area Equivalent Diameter

Projected area Rogak, Flagan & Nguyen 
(1993)

Direct-injection spark-ignition

4-cylinder, 1.9 L engine
E20 fuel
280 DBTDC injection


PAdm
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Other supporting studies
Park et al. (2004)
Ku & Maynard (2005)
Chakrabarty

 

et al.

 

(2007)
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Charging Efficiency for Aggregates 
and Spheres
•

 
Unipolar diffusion charger (Shin et al., 2010)
–

 

Difference between aggregate and sphere charging efficiency increases with 
increasing electrical mobility diameter.



21 Managed by UT-Battelle
for the U.S. Department of Energy

Particle Collection Efficiency

–
 

Analyzed 112 particles 
at 81K magnification

–
 

Estimated aggregate 
mobility diameter 
using  IA theory and 
projected area 

–
 

Extrapolated to area 
of TEM grid (3.05 mm 
diameter)

–
 

Calculated collection 
efficiency from power 
law calibration curve Particle Diameter (nm)
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Fierz et al. (2007)
y = 47.02*x^-0.5045

• Aerosol concentration calculation
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SMPS & TEM Size Distributions: 10 - 50nm
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SMPS
TEM: IA Theory
TEM: Projected Area

2-stage 
dilution with 
evaporator 
tube, DR = 30

Fuel injection 
for low PN, 280 
DBTDC, 1500 
rpm/ 8 bar, 
Engine-out

23 nm E.U. 
regulation limit

For < 23 nm solid number measured by TEM consistent with 
total number measured by SMPS

Within
2 x
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Conclusions
•

 
Wide primary particle diameter range
–

 
7 to 60 nm

–
 

Indicative of heterogeneous fuel and air mixing
–

 
Other speed and load points should be examined

•
 

Small primary size relative to diesel for minimum PN injection point
–

 
10 to 15 nm

–
 

Fuel and air mixing enhanced in some zones 
•

 
Presence of single solid particles smaller than 23 nm
–

 
TEM number concentration data consistent with SMPS for this 
size range

–
 

May be of health concern since can deposit in alveolar region 
and have greater percent surface area
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