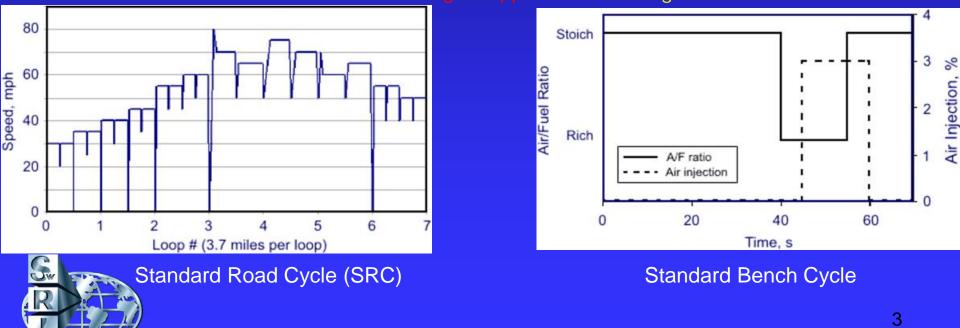
THE DAAAC PROTOCOL FOR ACCELERATED AGING OF DIESELAFTERTREATMENT SYSTEMS

Diesel Aftertreatment Accelerated Aging Cycles (DAAAC)


Presentation Outline

- Background
- DAAAC-HD Challenges
- DAAAC-HD Objectives
- Approach
- Test Plan
- DAAAC Consortium
- Future Plan

Background - Deterioration Factor (DF) Determination

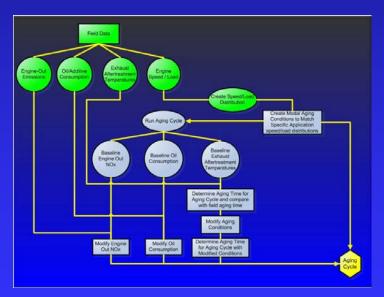
- US Light-Duty Vehicle Regulated Useful Life (RUL) = 192,000 to 240,000 km (120,000 to 150,000 miles)
- EPA "Final Rulemaking for Emissions Durability Test Procedures", December 29, 2005
 - EPA Standard Road Cycle (SRC) = 1943 Hours (75% of 192,000km (90,000 miles))
 - EPA Standard Bench Cycle (SBC) = 100-300 Hours (Application Dependent)

SBC cannot be used for diesel-engine applications – the genesis of DAAAC

Background - Deterioration Factor (DF) Determination

- On-Road Heavy-Duty Engine RUL = 696,000 km (435,000 miles)
 - 35 50% of RUL Based on Actual In-Use Operation (Including Transient Operation) <u>>4,250</u> Hours
 - No Accepted Accelerated Bench Aging Cycles
- DAAAC-HD Consortium Created to Develop Aging Cycles for Heavy-Duty Diesel Emission Systems

DAAAC-HD Challenges


- Wide Range of Emissions Standards and Durability Requirements
- Wider Range of Equipment Options/Choices for Diesel Over Gasoline

$\overline{}$	Gasoline Aftertreatment Systems	}
	Three-Way Catalyst (TWC) & HC Absorber	<pre>} one aging cycle (SBC)</pre>
	Oxygen Sensor – HEGO/UEGO	}
•	Diesel Aftertreatment Systems	}
	Diesel Oxidation Catalyst (DOC)	}
	Diesel Particulate Filter (DPF)	}
	In-Cylinder Post Injection or "7 th " Injector	<pre>} one aging cycle NOT likely</pre>
	Selective Catalytic Reduction (SCR)	}
	DEF Injection System / NO _X Sensor(s)	}
	All "Other" Emission Related Systems	}
	Variable Geometry Turbocharger	}
	EGR System (Valve, Cooler, Etc.)	}
	Aftercooler, Injectors	}

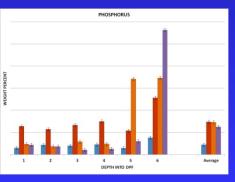
Challenge – How to Develop 'Generic' Accelerated Aging Procedure

DAAAC-HD Objective

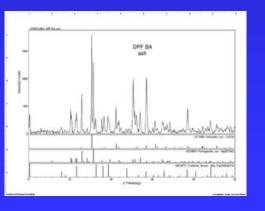
- Develop an Accelerated Aging *Protocol* for Diesel Aftertreatment Systems
 - The purpose of the DAAAC Protocol is to result in catalytic system deterioration similar to that observed in field-aged units
 - Using scientifically supported procedures, based on extensive physical and chemical analyses of field-aged system components

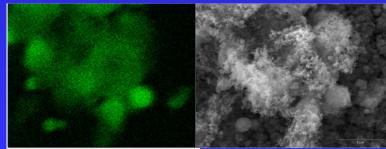
by

DAAAC-HD Approach (1)


Employ Sound Algorithms With Prior History

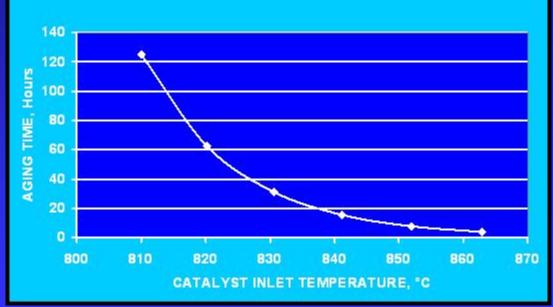
- Arrhenius equation for aging time and temperature correlation
 - example: EPA LD Vehicle SRC-SBC algorithm EPA FRM 12/29/2005


Employ Sound Physical Analyses for Correlation


- Surface Area BET
- Deposit Elemental Analysis PIXE
- Crystalline Compounds Identification (XRD)
- Optical Microscopy (OM)
- Scanning Electron Microscopy (SEM)

15th CLEERS WORKSHOP

DAAAC-HD Approach (2)


Thermal Component

• The Arrhenius equation relates the rate of a reaction to temperature

 $k = Ae^{-\frac{Ea}{RT}}$

- k Rate constant
- A frequency factor or pre-exponential factor
- e Mathematical quantity, e
- Ea activation energy
- R gas constant
- *T* temperature (Kelvin)

CATALYST AGING TIME AS A FUNCTION OF AGING TEMPERATURE

 E_a = 96.5 kJ/mol for CO oxidation on Pt 111 face (gasoline)

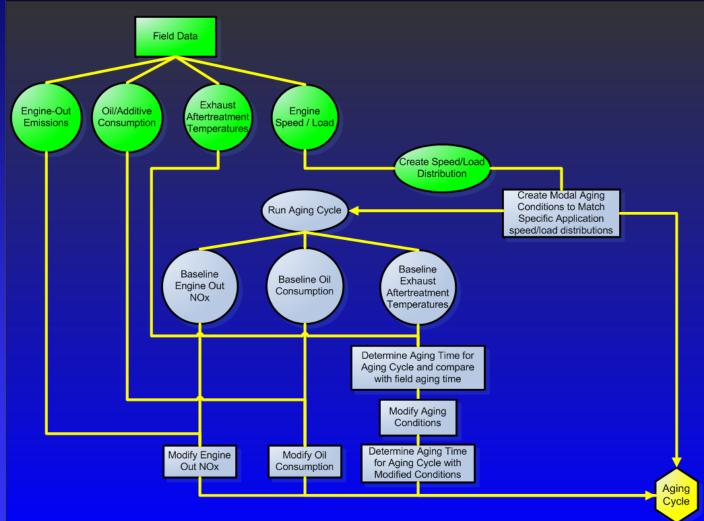
15th CLEERS WORKSHOP

Ed from DAAAC Data

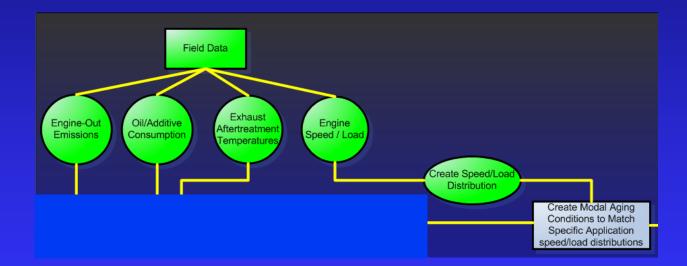
- Early DAAAC Work Assumed Ed for SCR as 150 kJ/mol
- Later Work used 98 kJ/mol, Based on SwRI IR&D
- Data From City Bus Aging and Testing Determined Ed for City Bus V-SCR Catalyst
- Ed for City Bus V-SCR Formulation = $113 \pm 5.6 \text{ kJ/mol}$

Inputs	η _{ref} Ea A R		% kJ/mol kJ·mol ⁻¹ ·K	250°C							
			ANR = 1.00								
	Temp.	Temp.	Time	η_{NOx}	k	ln(k)	1/T				
	°C	К	hrs								
Field Aged	335	608.15	322	28.8	0.002211	-6.11423	0.001644				
Bench A	325	598.15	532	32	0.001278	-6.66231	0.001672				
Bench B	318	591.15	674	27.3	0.001079	-6.83206	0.001692				
Bench C	356	629.15	188	20.9	0.004207	-5.4709	0.001589				
slope Ea	-13755 114.3591		Arrhenius correlation								
Oven aging Temp.,°C 356	Time, hr 188	$\begin{array}{c} -5 \\ -5.2 \\ -5.2 \\ -5.4 \\ -5.6 \\ -5.8 \\ -6 \\ -6.2 \\ -6.4 \\ -6.4 \\ -6.6 \\ -6.8 \\ -7 \end{array}$									
		250°C	ANR			480°C	ANR				
		230 C	0.75	1	1.25	480 C	0.75	1	1.25		
	Ea	112.6	104.3	114.4	113.7	107.3	112.5	<u> </u>	123.0		
Av	erage Ea=			11	11017	10/10	112.0	110.5	120.0		
	Dev. σ n ⁻¹ =	5.6									

DAAAC-HD Approach (3)

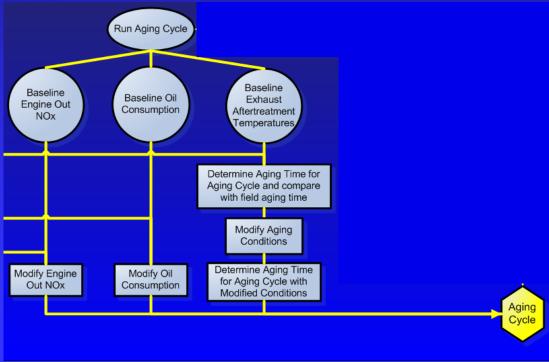

Chemical Component

- Heavy-Duty Diesel Engines May Consume Oil at a Higher Rate than Light-Duty Gasoline Engines
- Heavy-Duty Diesel Engines Have Higher Hour/Mile Requirements
 - Oil Effects on Catalysts and Filters Likely to be More Significant
- Include Oil Aging in DAAAC Procedures


DAAAC-HD Protocol Flow Diagram

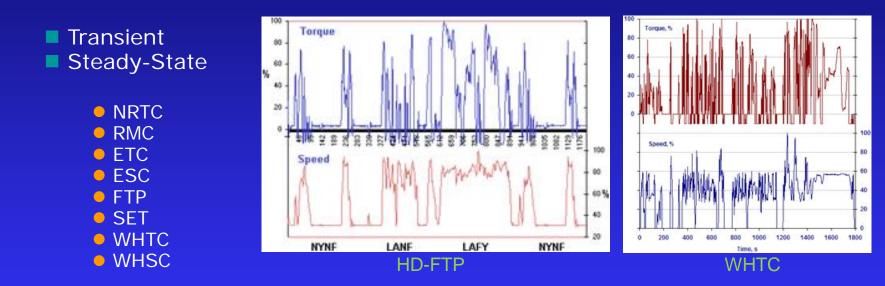
DAAAC-HD Test Plan (1)

- Acquire Field-Aged Components (DOC, DPF, SCR) and Field-Aging Data
- Sort Field Data by Time at Cycle Conditions
- Determine Base Accelerated Aging Cycle



DAAAC-HD Test Plan (2)

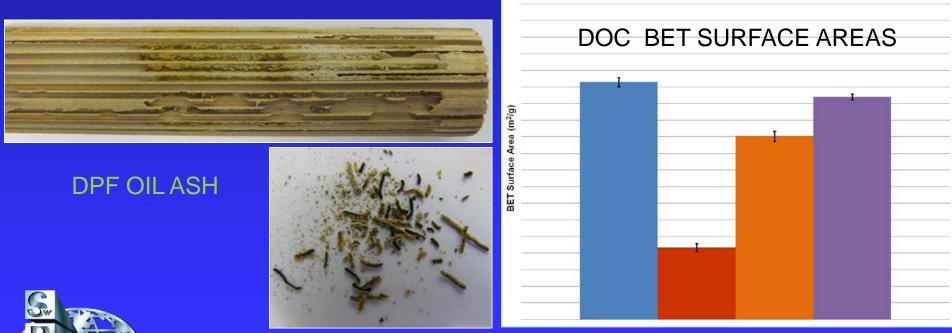
- Run Bench Engine Aging Cycle
- Measure Temperatures and Oil Consumption Rates
- Process Field and Bench Temperature and Oil Data Determine Accelerated Aging Duration Equivalent to Field
- Adjust Aging Cycle Temperatures / Oil Consumption to Modify Bench Aging Duration as Desired


15th CLEERS WORKSHOP

DAAAC-HD Test Plan (3)

- Emissions Testing Comparison Field versus Bench
- Several Standard Cycles Available as Appropriate

Synthetic Gas Reactor Testing of Core Samples Also Employed
SwRI's Universal Synthetic Gas Reactor[®] (USGR)[®]


15th CLEERS WORKSHOP

DAAAC-HD Test Plan (4)

Catalyst Physical Analyses Comparison – Field versus Bench

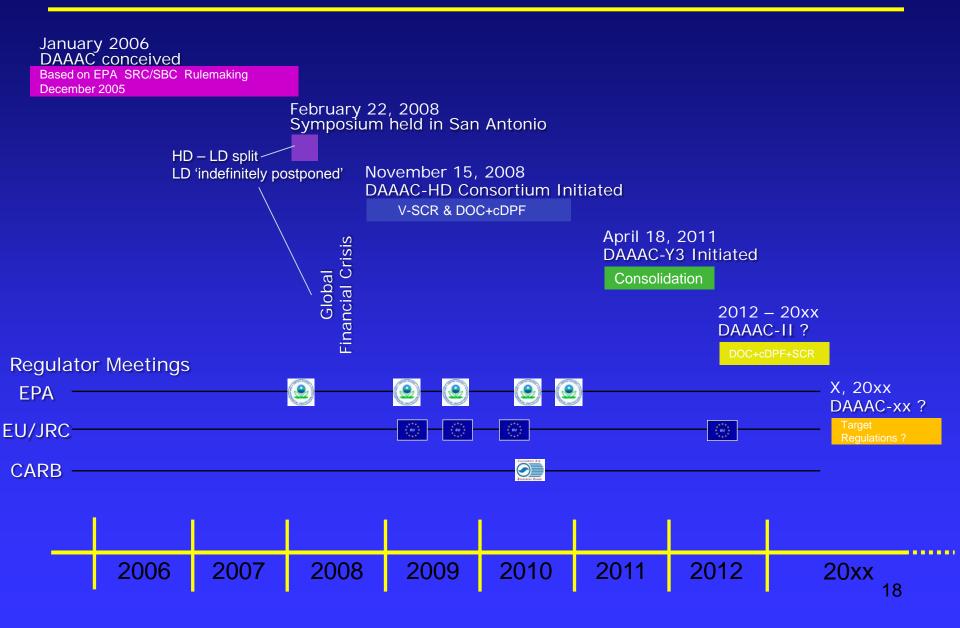
- surface area BET
- deposit loadings and profiles PIXE
- identify crystalline deposit compounds XRD
- image deposits OM & SEM
- other analysis as appropriate e.g. porosity

DAAAC-HD Test Plan (5)

Systems Evaluated To Date

- City Bus V-SCR, 110,000 km
- Long-Haul Truck V-SCR, 600,000 km
- Long-Haul Truck DOC+cDPF, 60,000 miles

• Multiple Bench Aging Iterations Performed



DAAAC-HD Consortium (1)

- Cooperative Research Program
- Initial Two-Year Term Began December 2008
- Expanded into Third Year April 2011
- Currently discussing DAAAC-II (1 3 years)

DAAAC-HD Consortium (2)

DAAAC-HD Consortium (3)

DAAAC-HD Consortium (4)

Communications - Website

DAAAC-HD Active Website www.daaac.swri.org

Monthly Progress Reports

PAC Review Meetings

E-mails

Telephone

DAAAC-HD Consortium (5)

- Communications Meetings
 - Nine PAC meetings to date
 - Four coincided with SAE World Congress
 - Three coincided with DEER Conference
 - Two held in San Antonio at SwRI

DAAAC-HD Consortium (6)

Regulators

- EPA and EU Commission have been involved from program start
- Offer DAAAC Protocol as acceptable procedure for emissions certification
- Explore possibility of DAAAC Protocol written into emissions regulations

DAAAC Future Plan

DAAAC-II

New MultiYear Program Plan Under Discussion

- Includes US 2010 emissions system DOC+cDPF+SCR+AMOx
- Incorporates mileage accumulation with data acquisition to 150,000+ miles
 - Up to five long haul trucks anticipated
- Includes off-road SCR-only system
- Multiple iterations of bench engine aging

Meetings/Discussions Continuing

Diesel Aftertreatment Accelerated Aging Cycles

15th CLEERS WORKSHOP

For More Information Contact: Gordon Bartley SwRI (210) 522-5871 gbartley@swri.org

