SCR DEACTIVATION KINETICS STUDY FOR CONTROL AND AGING APPLICATIONS

SwRI Internal Research Project

NH₃ STORAGE CAPACITY AND *Ed* DETERMINATION Final Report

Presentation Outline

Project Objectives

BASF Fe-Zeolite catalyst - recap

NH₃ storage capacity (Ω) test conditions, results and conclusions
 Deactivation energy (*Ed*) determination

- Johnson Matthey V/W/TiO2 'SINOx' Catalyst recap
 - NH₃ storage capacity (Ω) test conditions, results and conclusions Deactivation energy (*Ed*) determination
- BASF Cu-Zeolite catalyst new data
 - NH₃ storage capacity (Ω) test conditions, results and conclusions Deactivation energy (*Ed*) determination
- Overall Summary and Conclusions

Project Objectives

- SwRI Completed an Internal Research and Development Project to Better Understand SCR Catalyst Deactivation in Fall 2010
 - The project had three primary objectives:
 - Evaluate NH₃ storage capacity (Ω) as a function of aging time and temperature to provide data for on board SCR catalyst model-based control algorithms
 - Determine deactivation energies (*Ed*) for each SCR formulation to assist in accelerated thermal aging calculations using Arrhenius equation
 - Evaluate NO_x transient response with NH₃ transients for possible use as an On-Board Diagnostic (OBD) metric - presented in 2010. Not repeated here.

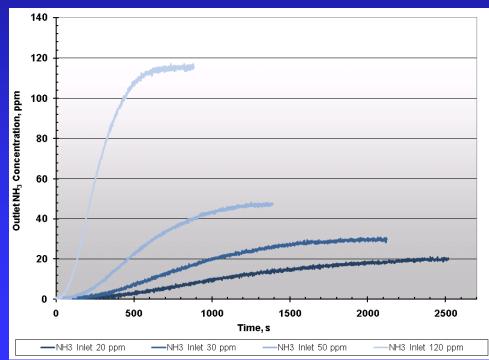
Catalyst Aging

- 1 inch diameter x 1 inch long core
- Aged in situ in SwRI Universal Synthetic Gas Reactor[®] (USGR[®])
- Gas Mixture: 14% O_2 , 5% CO_2 , 6% H_2O , balance N_2
- Space Velocity: 60,000 hr⁻¹
- Fe-Zeolite
 - Preconditioned 2 hours, 350°C (Max. Ω)
 - Aged 2, 4, 8, 16 hours at 475, 550, 625, 700°C

• V/W/TiO₂

- Preconditioned 2 hours, 600°C (Max. Ω)
- Aged 2, 4, 8, 16 hours at 550, 600, 650, 700°C

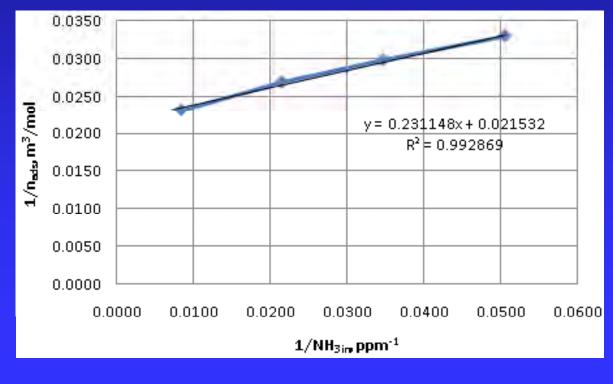
Cu-Zeolite


- Preconditioned 8 hours, 775°C (Max. Ω)
- Aged 2, 4, 8, 16 hours at 700, 775, 800, 850°C

Fe-Zeolite NH₃ Adsorption Test Conditions

- Gas Mixture: 14% O_2 , 5% CO_2 , 5% H_2O , X ppm NH_3 , balance N_2
- Test Temperature 200°C ± 0.5°C (tight control critical)
- Space Velocity 120,000 hr⁻¹
- Catalyst 'cleaned' of NH_3 Between Test Points (NO + NO_2 + NH_3 fast reaction used)
- ONH₃ Setpoints 20, 30, 50, 120 ppm
- Note Single Point Equilibration Times as Long as 54 Minutes at 20 ppm NH₃ Concentration

14th CLEERS WORKSHOP

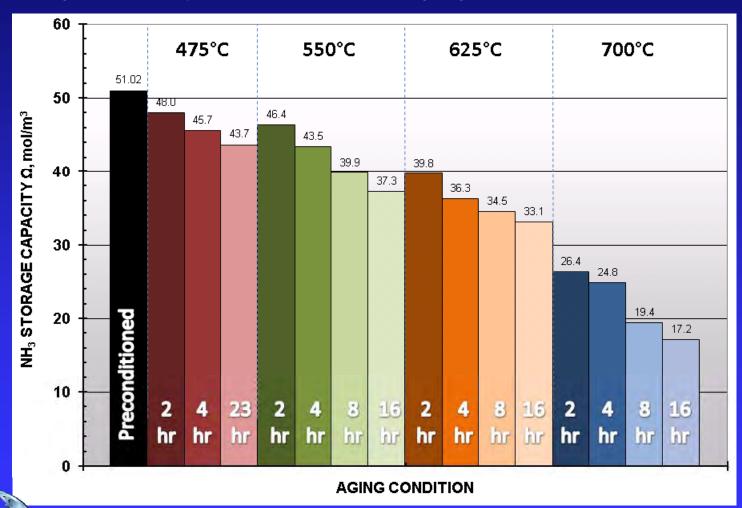

Fe-Zeolite NH₃ Adsorption Test Results (1)

 Data fitted to Langmuir adsorption isotherm model by plotting the data in Langmuir coordinates

 $1/n_{ads} = 1/\Omega + 1/(K_{eq} \times \Omega) \times 1/C_{NH_3}$

Plotting $1/n_{ads}$ as a function of $1/C_{NH_3}$ yields a line with slope $1/(K_{eq} \times \Omega)$ and intercept $1/\Omega$

R2 = 0.99, therefore NH₃ adsorption obeyed a Langmuir type isotherm well

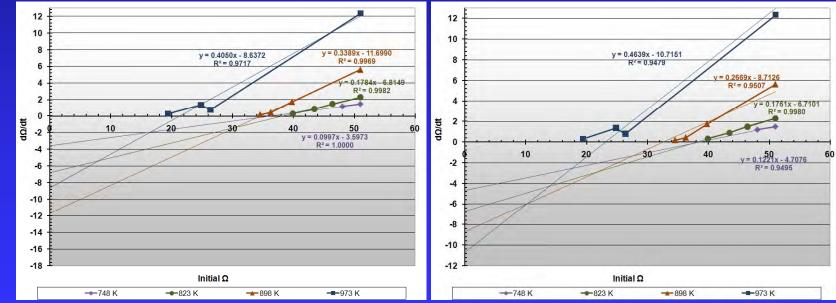


14th CLEERS WORKSHOP

Fe-Zeolite NH₃ Adsorption Test Results (2)

• NH₃ Storage Capacity Decreased with Aging Time and Temperature

Fe-Zeolite


Deactivation Energy Determination, Ed (1)

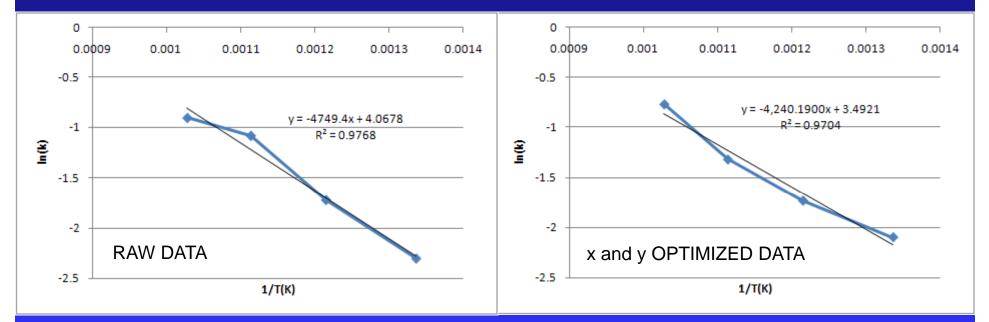
• 1st Order Rate Equation Returned 'Straight' Lines with Variable Intercepts

Rate Equation

 $- d\Omega/dt = k\Omega_1 + (x - yT)$

- Ω NH₃ storage capacity, mol/m³ t time, hours k rate constant T temperature, K x constant y constant
- Linear regression trendlines processed to obtain x and y constants

14th CLEERS WORKSHOP


Fe-Zeolite

Deactivation Energy Determination, Ed (2)

Arrhenius Equation Plots $k = A e^{-(Ed/RT)}$

• Raw Data - Ed = 39.49 kJ/mol A = 56.83

• x and y Optimized Data - Ed = 35.26 kJ/mol A = 32.85 x = 15.268 y = 0.0267

Fe-Zeolite

Deactivation Energy Determination, Ed (3)

• MS Excel Solver Used to Obtain Best Fit Constants

• Best fit - Ed = 43.16 kJ/mol A = 118 x = 45.05 y = 0.06454

	MEASURED Ω			
	-	TEMPERATURE, Kelvin		
Aging, Hrs	748.15	823.15	898.15	973.15
2	48.0	46.4	39.8	26.4
4	45.7	43.5	36.3	24.8
8	nd	39.9	34.5	19.4
16	nd	37.3	33.1	17.2

Test Data

		CALCULATED Ω			
	TEMPERATURE, Kelvin				
Aging, Hrs	748.15	823.15	898.15	973.15	
2	45.8	45.2	39.6	28.4	
4	41.8	42.2	38.2	29.2	
8	35.6	38.1	32.5	17.7	
16	28.9	38.9	35.1	15.5	

Calculated Values using Rate Equation - $d\Omega/dt = k\Omega_1 + (x - yT)$ and Best Fit Constants

		PERCENTAGE ERRORS		
	-	TEMPERATURE, Kelvin		
Aging, Hrs	748.15	823.15	898.15	973.15
2	4.6	2.6	0.4	7.7
4	8.6	2.9	5.3	17.6
8		4.5	5.8	9.0
16		4.2	6.0	9.6
Average %	6 error = 6.3			

Comparative Errors

Fe-Zeolite Summary and Conclusions (1)

- Aging of Catalyst for 2, 4, 8 and 16 Hours at 475, 550, 625 and 700°C
 Decreased NH₃ Storage Capacity (Ω)
- Using 1st Order Rate Equation
- Deactivation Energy Ed determined to be 43 kJ/mol
- Pre-Exponential Factor A determined to be 118

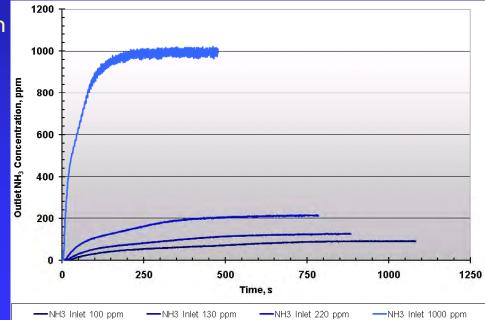
Fe-Zeolite Summary and Conclusions (2)

Possible to Predict NH₃ Storage Capacity In-Field using Two Equations:

$$t_c = t_{c-1} + e^{\left[-\frac{Ed}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right]}$$

Equation 1

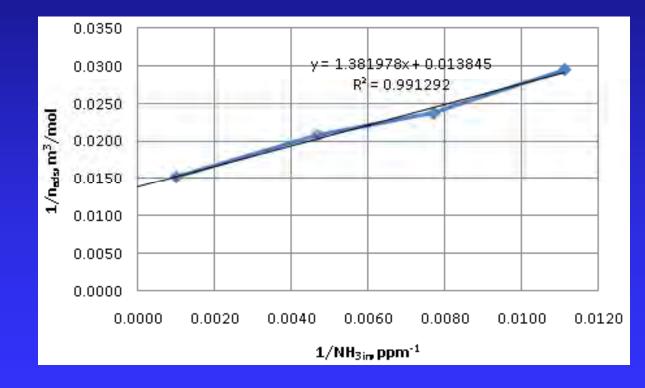
where t_c is the cumulative effective aging time, t_{c-1} is the previous cumulative effective aging time, *Ed* is the deactivation energy value (43 kJ/mol), *R* is the molar gas constant (0.00831451 kJ/mol/K), *T*1 is the given effective aging temperature and *T*2 is the current actual measured temperature


$$\Omega = \Omega_0 - t_c * \left[\left(A * e^{\left(\frac{Ed}{RT_1} \right)} \right) * \Omega_0 + (x - yT_1) \right]$$
 Equation

where Ω is the current NH₃ storage capacity to be calculated, Ω_0 is the initial maximum NH₃ storage capacity (51.02 mol/m³), t_c is the effective aging time calculated using Equation 1, A is the pre-exponential factor (118), *Ed* is the deactivation energy value, R is the molar gas constant, T_1 is the given effective aging temperature and x and y are constants (45.05 and 0.06454)

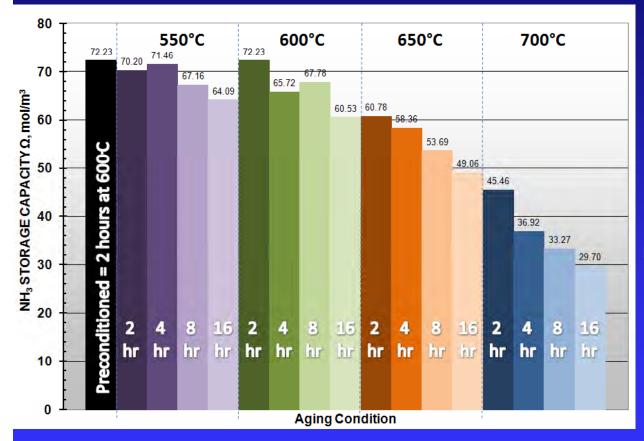
V/W/TiO₂ NH₃ Adsorption Test Conditions

- Gas Mixture: 14% O_2 , 5% CO_2 , 5% H_2O , X ppm NH_3 , balance N_2
- Test Temperature 200°C
- Space Velocity 120,000 hr⁻¹
- Catalyst 'cleaned' of NH_3 Between Test Points (NO + NO_2 + NH_3 fast reaction used)
- NH₃ setpoints 100, 130, 220, 1000 ppm
- Note Single Point Equilibration Times Still as Long as 37 Minutes Despite 100 ppm Lowest NH₃ Concentration



$V/W/TiO_2$ NH₃ Adsorption Test Results (1)

 Data fitted to Langmuir adsorption isotherm model by plotting the data in Langmuir coordinates


R2 = 0.99, therefore NH₃ adsorption obeyed a Langmuir type isotherm well

V/W/TiO₂ NH₃ Adsorption Test Results (2)

• NH₃ Storage Capacity Decreased with Aging Time and Temperature

- 550°C data includes some preconditioning, with deactivation at ≥ 8 hours
- 600°C data had inconsistent data points

550 and 600°C data could not readily be used for *Ed* calcs.

$V/W/TiO_2$ Deactivation Energy Determination, *Ed* (1)

• 1st Order Rate Equation with Variable Intercepts

Rate Equation

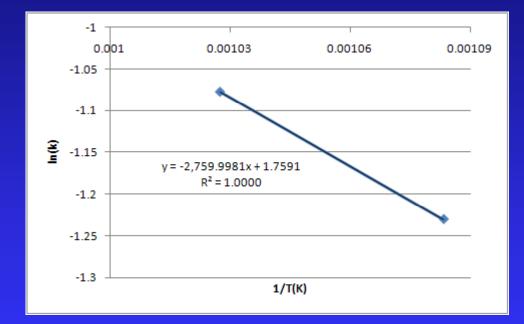
 $- d\Omega/dt = k\Omega + (x - yT)$

 Ω NH₃ storage capacity, mol/m³ t time, hours k rate constant x constant y constant

T temperature, K

 $\mathbf{k} = \mathbf{A} \mathbf{e}^{-(Ed/RT)}$ Arrhenius Equation

Only 650 and 700°C data used (550°C data includes conditioning, 600°C data inconsistent)



16

$V/W/TiO_2$ Deactivation Energy Determination, *Ed* (2)

Arrhenius Equation Plots $k = A e^{-(Ed/RT)}$

• Raw Data - Ed = 22.95 kJ/mol A = 5.81

Only two test points used. Therefore, repeat/verification testing highly recommended

$V/W/TiO_2$ Deactivation Energy Determination, *Ed* (3)

• MS Excel Solver Used to Obtain Best Fit Constants

Best fit - Ed = 98 kJ/mol A = 71971 x = 89.10 y = 0.10701

	MEASURED Ω			
	TEMPERATURE, Kelvin			
Aging, Hrs	823.15	873.15	923.15	973.15
2	70.2	72.2	60.8	45.5
4	71.5	66.8	58.4	36.9
8	67.2	62.3	53.7	33.3
16	64.1	60.5	49.1	29.7

Test Data

	(CALCULATED OMEGA 2			
	TEMPERATURE, Kelvin				
Aging, Hrs	823.15	873.15	923.15	973.15	
2	64.0	66.9	62.5	46.1	
4	56.6	60.3	57.6	44.3	
8	42.9	52.0	49.7	28.7	
16	20.2	44.3	51.2	29.7	

Calculated Values using Rate Equation - $d\Omega/dt = k\Omega_1 + (x - yT)$ and Best Fit Constants

	PERCENTAGE ERRORS			
	TEMPERATURE, Kelvin			
Aging, Hrs	823.15	873.15	923.15	973.15
2			2.78	1.40
4			1.32	19.94
8			7.47	13.78
16			4.38	0.15
	Average	% error =	6.40	

Comparative Errors

V/W/TiO₂ Summary and Conclusions (1)

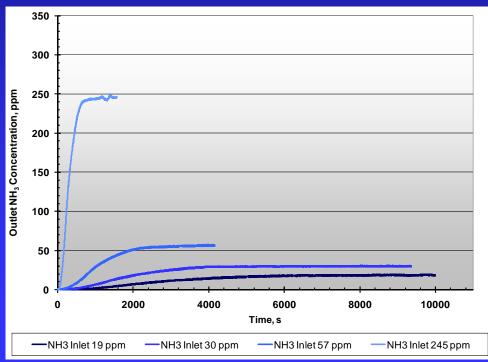
- Aging of Catalyst for 2, 4, 8 and 16 Hours at 550, 600, 650 and 700°C Generally Decreased NH₃ Storage Capacity (Ω)
- Deactivation Energy Ed determined to be 98 kJ/mol
- Pre-Exponential Factor A determined to be 71971
 - Only two aging temperatures used in calculations (650 and 700°C)
 - Repeat/verification testing highly recommended, but not performed in this work

V/W/TiO₂ Summary and Conclusions (2)

• Possible to Predict NH₃ Storage Capacity In-Field using same two equations:

$$t_c = t_{c-1} + e^{\left[-\frac{Ed}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right]}$$

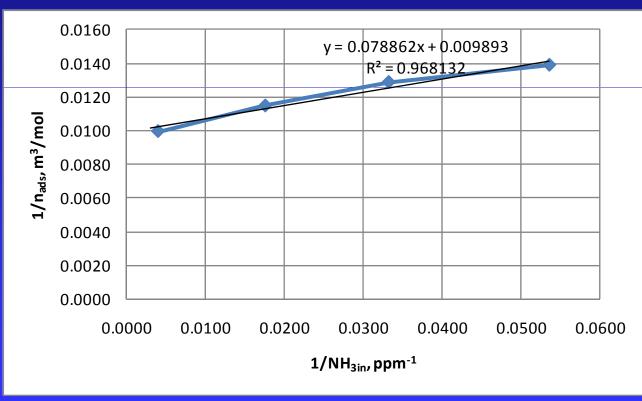
Equation 1


$$\Omega = \Omega_0 - t_c * \left[\left(\mathbf{A} * \mathbf{e}^{\left(\frac{Ed}{\mathbf{R}T_1}\right)} \right) * \Omega_0 + (\mathbf{x} - \mathbf{y}T_1) \right]$$

Equation 2

Cu-Zeolite (New Data) NH₃ Adsorption Test Conditions

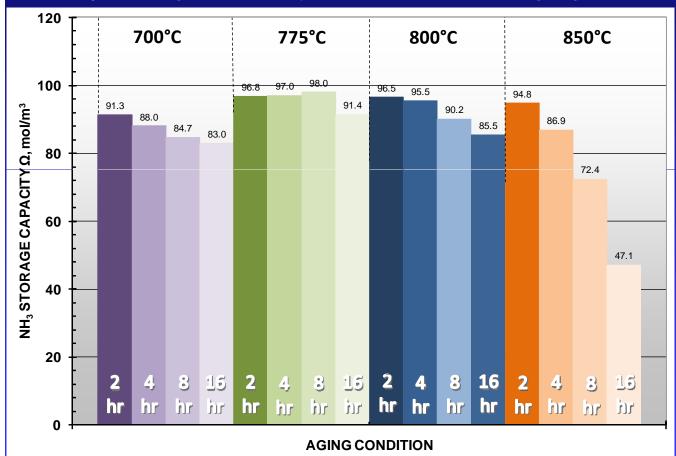
- Gas Mixture: 14% O_2 , 5% CO_2 , 5% H_2O , X ppm NH_3 , balance N_2
- Test Temperature 200°C
- Space Velocity 120,000 hr⁻¹
- Catalyst 'cleaned' of NH_3 Between Tests (NO + NO_2 + NH_3 fast reaction used)
- NH₃ setpoints 20, 30, 50, 200 ppm
- Note Single Point Equilibration Times as Long as 2.8 Hours at 20 ppm NH₃ Concentration


14th CLEERS WORKSHOP

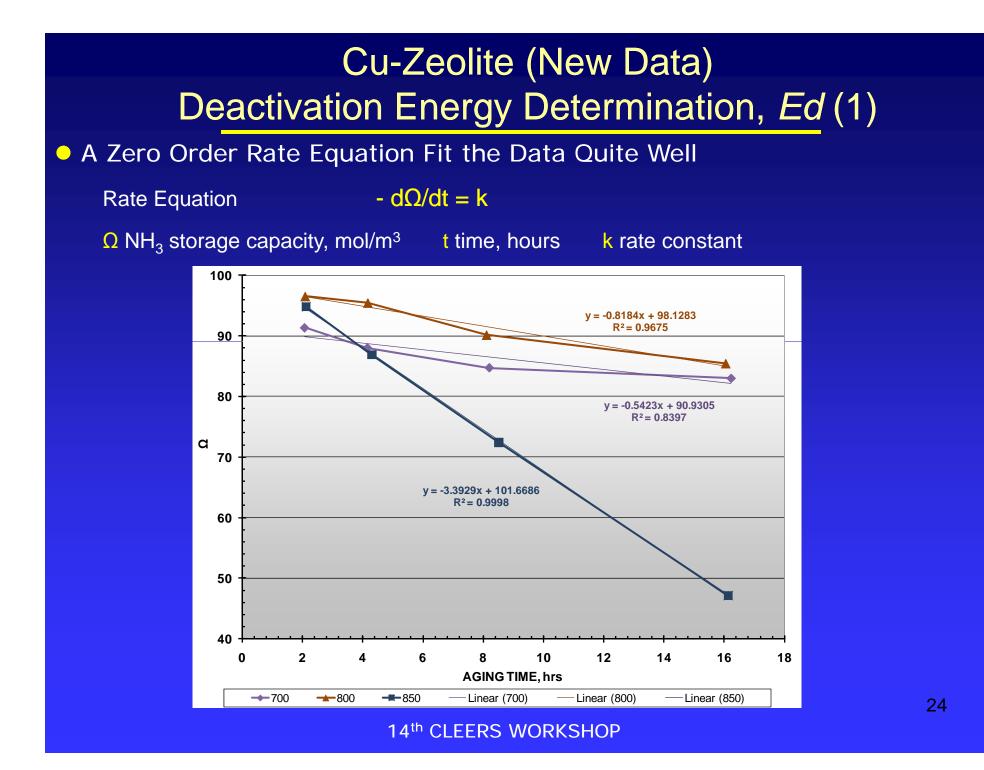
21

Cu-Zeolite (New Data) NH₃ Adsorption Test Results (1)

 Data fitted to Langmuir adsorption isotherm model by plotting the data in Langmuir coordinates

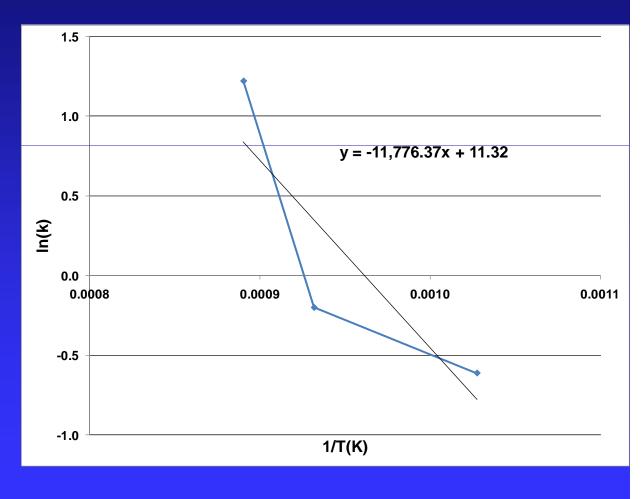

R2 \leq 0.97, NH₃ adsorption obeyed Langmuir type isotherm *reasonably* well

Cu-Zeolite (New Data) NH₃ Adsorption Test Results (2)


• NH₃ Storage Capacity Decreased with Aging Time and Temperature

Maximum Ω at 8 hours - 775°C

775°C data 'flat'. Not used in *Ed* calculations



Cu-Zeolite (New Data) Deactivation Energy Determination, *Ed* (2)

• Arrhenius Equation Plot Using Zero Order Data Returns Values of:

- *Ed* = 98 kJ/mol
- **A** = 82702

14th CLEERS WORKSHOP

Cu-Zeolite (New Data) Deactivation Energy Determination, *Ed* (3)

• MS Excel Solver Used to Obtain Best Fit Constants

Best fit - Ed = 96 kJ/mol A = 82703

	MEASURED Ω			
	TEMPERATURE, Kelvin			
Aging <i>,</i> Hrs	973.15	1048.15	1073.15	1123.15
2	91.4		96.5	94.8
4	88.0		95.5	86.9
8	84.7		90.2	72.4
16	83.0		85.5	47.1

Test Data

r				
	CALCULATED Ω			
	TEMPERATURE, Kelvin			
Aging, Hrs	973.15	1048.15	1073.15	1123.15
2	91.3		96.5	94.8
4	90.2		93.0	89.1
8	87.8		85.9	77.6
16	83.1		71.6	54.6

Calculated Values using Rate Equation $- d\Omega/dt = k$

and Best Fit Constants

		PERCENTAGE ERRORS		
	-	TEMPERATURE, Kelvin		
Aging, Hrs	973.15	1048.15	1073.15	1123.15
2	0.0		0.0	0.0
4	2.4		2.6	2.5
8	3.6		4.8	7.1
16	0.1		16.2	15.8
Average %	é error =	6.1		

Comparative Errors

Cu-Zeolite Summary and Conclusions (1)

- Aging of Catalyst for 2, 4, 8 and 16 Hours at 700, 775, 800 and 850°C
 Generally Decreased NH₃ Storage Capacity (Ω)
- Deactivation Energy Ed determined to be 96 kJ/mol
- Pre-Exponential Factor A determined to be 82703

Cu-Zeolite Summary and Conclusions (2)

• Possible to Predict NH₃ Storage Capacity In-Field using equations:

$$t_c = t_{c-1} + e^{\left[-\frac{Ed}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right]}$$

Equation 1

$$\Omega = \Omega_0 - t_c * \left[\left(\mathbf{A} * \mathbf{e}^{\left(\frac{Ed}{\mathbf{R}T\mathbf{1}} \right)} \right) \right]$$

Equation 3

Summary and Conclusions

SCR Formulation	Maximum NH ₃ Storage Capacity Ω, mol/m ³	Deactivation Energy <i>Ed</i> , kJ/mol
Fe-Zeolite	51	43
V/W/TiO ₂	72	98
Cu-Zeolite	97	96

 For SCR Catalysts, In-Use NH₃ Storage Capacity can be Calculated in Real Time using Only Operating Time and Temperature Measurements
 Model-based controllers that rely on Ω can utilize this methodology

Acknowledgements

- SwRI Advisory Committee for Research Funding
- Johnson Matthey V/W/TiO₂ Catalyst
- BASF Cu/Zeolite and Fe/Zeolite Catalysts
- SwRI Dr. Ted Kostek
- SwRI Christopher Chadwell
- SwRI Dr. Reggie Zhan
- SwRI Jason Miwa

