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Introduction – gradients tied to emissions catalysts

• Resolved axial gradients in a catalyst bed or monolith are often 
described in models, but not always easily verified experimentally

• Methodology is being  and has been developed to characterize 
the gradients existing in these reactor systems
– SPACiMS – spatially resolved capillary-inlet mass spectrometry
– Phosphor thermography
– In-situ DRIFTS
– Cutting samples into pieces
– Not only validate models - novel understanding of chemistry
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Introduction – measuring gradients (cont.)
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IR thermography previously used in catalyst and reactor 
characterization applications

Professors Luss, Wolf, Schmitz
Provides spatial and temporal resolution of temperature gradients/changes

Courtesy of PNNL

Soot filters
-Large exotherms,
- non-uniform reactant

concentrations,
- non-uniform flow,
- non-uniform reaction
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Gas flow

“view”

Introduction – measuring gradients
• To date focus has been on DOC and NOX trap catalysts
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• To facilitate “viewing” – 2-D sample

• Catalyst samples are 3” x 3” x 2 (or 3) cells high
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Introduction – IRT reactor
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2-dimensional reactor designed and used for these experiments
Upper surface imaged (1/2 cell between surface and reactor top)
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Introduction – experiment set-up
• “2-D” catalyst sample

• IR thermography

– Temperature changes across the 

surface can be directly monitored

– Therefore, __thermic reactions can 

be indirectly monitored

– Spatially resolving the reaction

6

“screen-shot” 
style data

Gas flow
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Introduction – data analysis
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• Camera image of catalyst

• Color palette is converted to 
temperature

• Radially centered line, 12 
points chosen
– Change in T plotted
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NSR – typical reaction scheme
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3. Reductant evolution (diesel, rich exhaust, reformed gas)
4. NOX release from the Ba(NO3)2 BaO + 2NO2 + O

storage site - Ba(NO3)2 + CO BaCO3 + 2NO2

5. NOX reduction to N2 2NO2 + 4CO N2 + 4CO2

Regeneration (Reducing Atmosphere)
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NSR – moving reaction “front”
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NO2NO2

-
Saturated zone

Trapping zone

Lean phase

Literature typically reports a 
relatively homogeneous moving 
front through NSR catalysts

Spaci-MS work confirms 
saturation front 

So, how much of the sample is 
really being used?

Courtesy of Cummins Inc and Chalmers U

During regeneration, the same phenomenon occurs, just in reverse 
– reductant progresses through the sample, reducing nitrates
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NSR – IR thermography application
Multiple reactions

– Lean – NO oxidation and NOX trapping
• Exothermic

• Spread over a long period of time

• Low reactant amounts (100’s ppm)

– Regeneration – nitrate reduction
• Exothermic

• Regeneration is typically short (~5 seconds)

• Larger reactant amounts (concentrated nitrates on surface, 
larger % of reductant)

10

-Saturated zone

Trapping zone

Therefore – during regeneration the heat evolved could be 

associated with nitrate reduction – telling us where NOX was 

trapped in the previous trapping phase
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NSR – results, performance data
• Shorter trapping – better conversion
• Longer regeneration – better conversion
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300 ppm NO in, 300°C, 
Pt/Ba/Al2O3 catalyst
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CO (and NH3) breakthrough observed 
during regen – not reductant limited
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NSR – results, performance data

12

300 ppm NO in, 300°C, 
Pt/Ba/Al2O3 catalyst
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For the following data – plotting 

maximum temperature difference 

observed for each cycle, at the 

different positions

Example – position 2, 30 s lean, 8 s rich
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NSR – temperature data
Shorter lean time (30s)
• Front-to-back saturation 

observed

• Not much effect of 
regeneration time

– 1.41, 1.47 and 1.51 cm3 of NOX 
trapped

• Larger temperature rise 
indicates more was trapped
– 3.4, 3.7, and 3.9 cm3 trapped

• Effect of regeneration 
observed (more trapped with 
longer regen)

• Not front-to-back monotonic 
temperature rise
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NSR – model predictions
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Schmeiβer et.al., Topics 
in Catalysis

1Guthenke et.al. Chem. Eng. 
Sci. 62(2007)5357

Separate model1 has been 
adapted to fit cycling and 
saturation data

There is some justification for seeing a non-monotonic 
profile, intuitively, NO oxidation might limit

Coverage of Ba(NO3)2

along catalyst
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NSR – cycling data

• Standard cycling experiments again (aged sample)

• 2 reductant levels, one below OSC (0.75%) one well 
above (4.5%)
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NSR – cycling data

With lower R
– longer delay before delta T 

(longer to titrate OSC)
– Delay between each 

position – titration of 
nitrates

– Only cleaning front 6-8 
positions (and P2 not even 
at max T)
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0.75%

4.5%

With higher R
– Some delay between 

positions
– Even at 400°C – some 

nitrates left behind after 5 
seconds (only P1 T dropping)
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NSR – catalyst use
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With “enough” reductant – most NOX is trapped at front
Again – monotonically decreases down length

Experiment – cycle until steady performance (data above), then long regen 

Long regen after cycling shows where the leftover nitrates are along the 
catalyst
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NSR – catalyst use
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• With “not enough” reductant – NOX is trapped
throughout catalyst – the front is being regenerated and
used, the back fills up until steady cycle-to-cycle

• T rise is slightly less (6°C in previous plot)

• Not monotonic
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NSR – leftover trapped NOX
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Beginning of lean Later in lean After regeneration
With 

“enough” 
reductant

Beginning of lean Later in lean After regeneration
With “not 
enough” 

reductant

After regeneration

After regenerationAfter regenerationBeginning of lean Later in lean

After regenerationBeginning of lean
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NSR – leftover nitrates
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0.25”, ~P3 1.5”, ~P6

Temperature increases match presence of H2 – no H2, no T increase

H2 concentrations

Data obtained during 
cycling (5 second regen) 2”, ~P8

- Capillary probe positioned at rough

estimates of camera positions

- Data taken after steady cycle-to

cycle and moved after several

cycles

- Low reductant amount to resolve

temperature profiles

- Half of the catalyst being

regenerated and therefore used
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NSR Summary

• Characterization of NSR catalysts shows

– Short trapping times leads to monotonic saturation 
style gradient

– Longer trapping times (more trapped) leads to a 
maximum in amount trapped slightly downstream of 
the inlet

• IR thermography clearly shows portion of 
catalyst being used during cycling

– Thermography data is validated by SPACi

21
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