Temperature and Concentration Gradients during NOX Storage and Reduction Cycling

Bill Epling¹, Alex Yezerets² and Neal Currier²

¹University of Waterloo ²Cummins Inc

May 13, 2008 CLEERS

Introduction – gradients tied to emissions catalysts

- Resolved axial gradients in a catalyst bed or monolith are often described in models, but not always easily verified experimentally
- Methodology is being and has been developed to characterize the gradients existing in these reactor systems
 - SPACiMS spatially resolved capillary-inlet mass spectrometry
 - Phosphor thermography
 - In-situ DRIFTS
 - Cutting samples into pieces
 - Not only validate models novel understanding of chemistry

Introduction – measuring gradients (cont.)

IR thermography previously used in catalyst and reactor characterization applications Professors Luss, Wolf, Schmitz

Provides spatial and temporal resolution of temperature gradients/changes

Soot filters

- -Large exotherms,
- non-uniform reactant concentrations,
- non-uniform flow,
- non-uniform reaction

Courtesy of PNNL

May 13, 2008 CLEERS

Introduction – measuring gradients

• To date focus has been on DOC and NOX trap catalysts

- To facilitate "viewing" 2-D sample
 - Catalyst samples are 3" x 3" x 2 (or 3) cells high

Introduction – IRT reactor

2-dimensional reactor designed and used for these experiments Upper surface imaged (1/2 cell between surface and reactor top)

Introduction – experiment set-up

- "2-D" catalyst sample
- IR thermography
 - Temperature changes across the surface can be directly monitored
 - Therefore, ____thermic reactions can be indirectly monitored
 - Spatially resolving the reaction

Gas flow

"screen-shot" style data

Introduction – data analysis

- Camera image of catalyst
- Color palette is converted to temperature
- Radially centered line, 12 points chosen

NSR – typical reaction scheme

- 3. Reductant evolution
- 4. NO_X release from the storage site -
- (diesel, rich exhaust, reformed gas) Ba(NO₃)₂ \rightarrow BaO + 2NO₂ + {O} Ba(NO₃)₂ + CO \rightarrow BaCO₃ + 2NO₂ 2NO₂ + 4CO \rightarrow N₂ + 4CO₂
- 5. NO_{χ} reduction to N_{2}

Waterloo

Regeneration (Reducing Atmosphere)

NSR – moving reaction "front"

Lean phase

During regeneration, the same phenomenon occurs, just in reverse – reductant progresses through the sample, reducing nitrates

NSR – IR thermography application

Multiple reactions

- Lean NO oxidation and NOX trapping
 - Exothermic
 - Spread over a long period of time
 - Low reactant amounts (100's ppm)
- Regeneration nitrate reduction
 - Exothermic

Waterloo

- Regeneration is typically short (~5 seconds)
- Larger reactant amounts (concentrated nitrates on surface, larger % of reductant)

NSR – results, performance data

- Shorter trapping better conversion
- Longer regeneration better conversion

NSR – results, performance data

NSR – temperature data

Shorter lean time (30s)

- Front-to-back saturation observed
- Not much effect of regeneration time
 - 1.41, 1.47 and 1.51 cm³ of NOX trapped

Longer lean time (90s)

- Larger temperature rise indicates more was trapped – 3.4, 3.7, and 3.9 cm³ trapped
- Effect of regeneration observed (more trapped with longer regen)
- Not front-to-back monotonic temperature rise
 Waterloo

May 13, 2008 CLEERS

NSR – model predictions

There is some justification for seeing a non-monotonic profile, intuitively, NO oxidation might limit

NSR – cycling data

- Standard cycling experiments again (aged sample)
- 2 reductant levels, one below OSC (0.75%) one well above (4.5%)
- 60/5 cycle, 400°C
- <10 ppm CO slip for low R testing

NSR – cycling data

With lower R

- longer delay before delta T (longer to titrate OSC)
- Delay between each position – titration of nitrates
- Only cleaning front 6-8 positions (and P2 not even at max T)

With higher R

- Some delay between positions
- Even at 400°C some nitrates left behind after 5 seconds (only P1 T dropping)

NSR – catalyst use

Experiment – cycle until steady performance (data above), then long regen

Long regen after cycling shows where the leftover nitrates are along the catalyst 7 4.5% R

With "enough" reductant – most NOX is trapped at front Again – monotonically decreases down length

NSR – catalyst use

- With "not enough" reductant NOX is trapped throughout catalyst – the front is being regenerated and used, the back fills up until steady cycle-to-cycle
- T rise is slightly less (6°C in previous plot)
- Not monotonic

NSR – leftover trapped NOX

NSR – leftover nitrates

- Low reductant amount to resolve temperature profiles
- Half of the catalyst being regenerated and therefore used

Waterloo

- Capillary probe positioned at rough estimates of camera positions
- Data taken after steady cycle-to cycle and moved after several cycles

Temperature increases match presence of $H_2 - no H_2$, no T increase

NSR Summary

- Characterization of NSR catalysts shows
 - Short trapping times leads to monotonic saturation style gradient
 - Longer trapping times (more trapped) leads to a maximum in amount trapped slightly downstream of the inlet
- IR thermography clearly shows portion of catalyst being used during cycling

Thermography data is validated by SPACi

Acknowledgements

People who did the work

Alan Shaw Khurram Aftab

Frank Cheuk

People who paid for the work

National Sciences and Engineering Research Council of Canada Cummins Inc

Johnson Matthey for catalysts

