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Background 

• ORNL purchased a MY2008 
BMW 1-series 120i lean 
gasoline engine vehicle with a 
N43B20 2.0-liter, 4-cylinder 
engine with direct injection 

 

• The vehicle was characterized 
on a chassis dynamometer 

 

• Engine measurement results 
are available on the CLEERS 
database 

 

• A core from the LNT was made 
available for ORNL laboratory 
testing 
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CLEERS LNT Protocol 

Oxygen Storage 

 

Long cycle Cycles 

 

 

Nominal fixed conditions: 30,000 1/hr SV.  

Objective: Establish inherent oxygen storage (as reflected in reductant demand) exclusive of NOx. 

Frequency: Run at the beginning of protocol testing for each material. 

 

Run 

No.* 

Temp (deg C)
+
 Gas 

Mix
++

 

Lean 

period 

(s) 

Injected 

Reductant 

Regen peak 

(ppm) 

Regen 

period 

(s) 

No. of 

cycles 

C1 Tmax M1 0 H2 10,000 900 1 

C2 Tmax M2 60 CO 10,000 30 30 

C3 .75(Tmax-Tmin)+Tmin M2 60 CO 10,000 30 30 

C4 .5(Tmax-Tmin)+Tmin M2 60 CO 10,000 30 30 

C5 .5(Tmax-Tmin)+Tmin M3 60 CO 10,000 30 30 

C6 .5(Tmax-Tmin)+Tmin M4 60 CO 10,000 30 30 

C7 .25(Tmax-Tmin)+Tmin M2 60 CO 10,000 30 40 

C8 Tmin M2 60 CO 10,000 30 50 

 

Footnotes: 

* Calibration data consists of measured post-reactor values for CO and UEGO output for runs C2-C8 as the 

inlet gas mixture is cycled between rich and lean conditions.  
 

+
 Tmax = 500°C and Tmin = 150C. 

 

++ Gas inlet mix M1= 5% H2O, 5% CO2, balance N2 

     Gas inlet mix M2= 5% H2O, 5% CO2, 10% O2, balance N2 

     Gas inlet mix M3= 5% H2O, 5% CO2, 5% O2, balance N2 

     Gas inlet mix M4= 5% H2O, 5% CO2, 1% O2, balance N2 

Run 

No.
 

 

Temp (deg C)
+
 Gas 

Mix
++

 

SV 

(1/hr) 

Lean 

period 

(s) 

Reductant* Regen 

peak 

(ppm)*

* 

Regen 

period 

(s)# 

No. 

of 

cycles 

1 Tmax 1 30,000 0 H2 1,000 600 1 

2 Tmax 2/3 30,000 900 CO/H2 1,000 600 3 

3 Tmax 2/4 30,000 900 None 0 600 1 

4 Tmax 1 30,000 0 H2 1,000 600 1 

5 .75(Tmax-Tmin)+Tmin 2/3 30,000 900 CO/H2 1,000 600 3 

6 .75(Tmax-Tmin)+Tmin 2/4 30,000 900 None 0 600 1 

7 Tmax 1 30,000 0 H2 1,000 600 1 

8 .5(Tmax-Tmin)+Tmin 2/3 30,000 900 CO/H2 1,000 600 3 

9 .5(Tmax-Tmin)+Tmin 2/4 30,000 900 None 0 600 1 

10 Tmax 1 30,000 0 H2 1,000 600 1 

11 .25(Tmax-Tmin)+Tmin 2/3 30,000 900 CO/H2 1,000 900 5 

12 .25(Tmax-Tmin)+Tmin 2/4 30,000 900 None 0 600 1 

13 Tmax 1 30,000 0 H2 1,000 600 1 

14 .25(Tmax-Tmin)+Tmin 2A/3 30,000 900 CO/H2 1,000 900 5 

15 .25(Tmax-Tmin)+Tmin 2A/4 30,000 900 None 0 600 1 

16 Tmax 1 30,000 0 H2 1,000 600 1 

17 Tmin 2/3 30,000 900 CO/H2 1,000 900 5 

18 Tmin 2/4 30,000 900 None 0 600 1 

19 Tmax 1 30,000 0 H2 1,000 600 1 

20 Tmin 2A/3 30,000 900 CO/H2 1,000 900 5 

21 Tmin 2A/4 30,000 60 None 0 600 1 

22 Tmax 1 30,000 0 H2 1,000 600 1 

23 Tmax 2/3 30,000 900 L 1,000 600 3 

24 Tmax 2/4 30,000 900 None 0 600 1 

25 Tmax 1 30,000 0 H2 1,000 600 1 

26 .75(Tmax-Tmin)+Tmin 2/3 30,000 900 L 1,000 600 3 

27 .75(Tmax-Tmin)+Tmin 2/4 30,000 900 None 0 600 1 

28 Tmax 1 30,000 0 H2 1,000 600 1 

29 .5(Tmax-Tmin)+Tmin 2/3 30,000 900 L 1,000 600 3 

30 .5(Tmax-Tmin)+Tmin 2/4 30,000 900 None 0 600 1 

31 Tmax 1 30,000 0 H2 1,000 600 1 

32 .25(Tmax-Tmin)+Tmin 2/3 30,000 900 L 1,000 900 5 

33 .25(Tmax-Tmin)+Tmin 2/4 30,000 900 None 0 600 1 

34 Tmax 1 30,000 0 H2 1,000 600 1 

35 Tmin 2/3 30,000 900 L 1,000 900 5 

36 Tmin 2/4 30,000 900 None 0 600 1 

 

http://cleers.org/focus_groups/private

/Lean-

NOx/files/1113847174LNTmap_7_18

_05.pdf 
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Max 10 minute 
lean cycle for 
protocol 

Includes water 
and CO2 so WGS 
is active 

http://cleers.org/focus_groups/private/Lean-NOx/files/1113847174LNTmap_7_18_05.pdf
http://cleers.org/focus_groups/private/Lean-NOx/files/1113847174LNTmap_7_18_05.pdf
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Protocol Issues 

• Original protocol evaluation, Epling, Currier and Yezerets 
http://www.cleers.org/workshop8/presentations/epling.pdf 

 

• Temperatures ranging from 150 – 550°C equally spaced in 
1/T [K] to facilitate better reaction modeling 
– 150°C, 209°C, 286°C, 393°C, 550°C  

 

• For this application 600 seconds lean was not sufficient to get 
complete NOx storage at all temperatures 
– Josh reran the long POx protocol and adjusted storage times to 

reach full NOx storage 
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Void: monolith channel

Al-rich

Ce & Zr-rich

Ba-rich

CordieriteMg & Al-rich

Void: monolith channel

Al-rich

Ce & Zr-rich

Ba-rich

CordieriteMg & Al-rich

New Generation Lean GDI LNT 
(benchmarking against CLEERS reference 

catalyst) 

CLEERS reference 

Lean GDI, 2004, provided by 

Umicore 

New LNT 

Lean GDI, 2009, from BMW 

120i vehicle 
Ce & Zr-rich 

Mg & Al-rich 

Cordierite 

New generation is more highly dispersed for most components 



CLEERS LNT versus BMW LNT 
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Element CLEERS 
ref 
 

BMW 
 

Units 
 

Ba 14.88 19.98 g/L 

Ce 67.36 55.51 g/L 

Zr 5.11 4.32 g/L 

La 2.84 2.45 g/L 

Pt 2.45 2.18 g/L 

Pd 0.77 0.85 g/L 

Rh 0.30 0.30 g/L 

PGM 3.52 3.32 g/L 

K 0.06 0.04 g/L 

Sr 0.34 0.39 g/L 

Na 0.03 0.07 g/L 

Ca N/A 0.09 g/L 

FULL SIZE BRICKS 

Prop
erty 

CLEERS 
ref 
 

BMW 
 

Units 

cell 
density 

625 413 cells/in2 

97 64 cells/cm2 

mass 465.83 853.24 g 

area 109.36 117.24 cm2 

length 7.5 11 cm 

volume 820 1290 cm3 

0.820 1.290 L 

density 567.9 661.6 g/L 

Common 
NOx storage 
components 

PGM similar 

Ceria 
slightly 
less 

Dispersion and cell density 

most significant differences 



ORNL 

Laboratory 

Reactor 

Architecture 
• Flow simulations were 

used to calculate 
measurement delays 
 

• Measurement delays 
were calculated to vary 
from 0.1 second to 0.7 
seconds 
 

• For efficiency, the full 
flow architecture was 
not used for mechanism 
development 
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JOSH 

ORNL Laboratory Setup 



Modeling Approach 
• GT-SUITE software 

• 1D, quasi-steady flow solution 

• GTI’s Advanced Adaptive chemistry solver 

 

 

 

 

 

 

 

 

 
Ref: SAE 2007-01-4127 
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GT-SUITE  Advanced Adaptive 

Chemistry Solver 
• Chemical kinetics creates stiff systems.  To solve these systems robustly 

and accurately, the solver must be highly 

ADAPTIVE 

• The solver uses adaptive : 

• Time steps 

• Axial steps 

• Non-linear iterations 

• Highest stability standards are applied: 

• Fully coupled, no lagging 

• BDF (Backward Differentiation Formula) integration methods 

• Numerically efficient:  

• 20 – 2000 times faster than real time depending on kinetics and inlet 

boundary conditions 
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Especially 

helpful for 

transients 



Water-Gas-Shift Reaction Calibration 

• WGS calibrated at 286°C and 393°C to match steady-state CO/H2 ratio 

– Inactive at 150°C and 209°C; at chemical equilibrium at 550°C 

• Ahrrenius plot of ln(rate) vs. 1/T gave kinetic rate constant fit 

18.248090  xy



Oxygen Storage Protocol Measurements 

• 60 second 10% O2 storage, 30 second reduction by 1% CO 

• Balance of OSC reaction and WGS shows a temperature-dependent 

oxygen storage capacity 

• Water-gas-shift reaction calibrated to match steady-state CO/H2 ratio 

Thick lines: measured   Thin lines: model prediction 



Oxygen Storage and Reduction Modeling 

• Oxygen storage capacity increases with increasing temperature due to 

balance with WGS reactions 

• Maximum storage estimated from extrapolation  21.25 mol/m3 

• Temperature-dependent equilibrium coverage controls storage capacity 

)339,max(

339
1)(

42 T
TOCe 

25.211.7202  xy 11.339  xy

I am not sure that 
there is any 
substantiation in the 
literation for this 



NOx Storage Experimental Data 
Measurements available for 7 different cases   

300 ppm NO 

300 ppm NO2 

Inlet:  
10% O2 

5% CO2 

5% H2O 
N2 excess 
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Not 
equilibrated 
at 10 
minutes 

10 minutes not 
sufficient to 
stabilize NO2 
concentration 



NO Oxidation from NO Inlet 

Experiments 
• Protocol does not directly provide NO oxidation information 

• NO2/NOx reaches near steady-state in all cases 

• NO oxidation kinetics were calibrated using NO2/NOx ratio 



NO Oxidation from NO Inlet 

Experiments 

SV = 30,000 1/hr 
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NOx Storage Modeling 

• Equilibrium coverage method for NOx storage modeling has two major 

flaws 

 

 

 

 

 

• When              , R = 0, which is not supported by the data 

– NOx clearly releases from the surface when oxygen is absent 

 

• When                      ,  R < 0,  net rate is NOx release from surface 

– The net rate is still dependent on         , which is not physical 
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NOx Storage Modeling 
• NO2 inlet experiments calibrated first 

– Reverse NO oxidation does not occur at 150°C; negligible at 

209°C 

• One-step disproportion reaction accounts for outlet NO at 209°C; 

150°C approaches theoretical value at steady-state 

 

 

 

NONOBaNOBaO  232 )(3
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Where does the 
model get NO at 
time-0?? 



NOx Storage Modeling 

• Three-step disproportion needed to match peak NO outlet concentration at 

150°C 

 

 

• Two site storage needed for delayed breakthrough 

• Quite possibly the low temperature adsorption is on ceria, see Chuan et. al, 

Applied Catalysis B: Environmental 119–20 (2012) 183–196 

NONOBaNOBaO  232 )(3

2322

22

22

)(2 NOBaNOBaO

NOBaONOBaO

NOBaONOBaO







Thick lines: measured   Thin lines: model prediction 

rate-limited 
at low 
temperature 
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3 site? 



Measured              Model prediction 

NOx Storage Modeling – NO Inlet Experiments 

• Current mechanism 
– Two storage sites 

– Storage + release of 
both NO and NO2 

– Retains satisfactory 
results with NO2 
experiments 

 

• Additional work needed 
– Release at 150°C 

– Breakthroughs at 286°C 
and 393°C  
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Equilibrium NOx Storage Capacity 
• Current model predicts storage capacity both quantitatively and 

qualitatively  

Model 

Experiment 



Current Mechanism 
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OHOCeHOCeR

COOCeCOOCeR

OCeOOCeR

COHCOOHR

ONOOaBNOaBR

ONOOaBNOaBR

NOaBONOOaBR

NONOaBNOOaBR

ONOBaONOBaR

ONOBaONOBaR

NOBaONOBaOR

NOBaNOBaOR

NOBaONOBaOR

NOBaONOBaOR

NOONOR

232242

23242

42232

222

2223

223

232

232

2223

223

232

2322

22

22

22

:15

:14

5.0:13

:12

5.02)(:11

5.12)(:10

)(5.12:9

)(3:8

5.02)(:7

5.12)(:6

)(5.12:5

)(2:4

:3

:2

5.0:1































Active Site Densities 
 (moles/m3 total catalyst volume) 

PGM 2.02 

Ba 64 

Ba’ 11 

cerium 84 



Current Mechanism 
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All rates are turnover number based 

All concentrations in mol/m3 

 Reaction A Ta (K) 

R1 6.56E7 5212 

R2 0.23 0 

R3 35.5 0 

R4 1.1E10 10350 

R5 0.001 0 

R6 120900 12360 

R7 2.2 5220 

R8 3.55 0 

R9 5.65 0 

R10 231000 12360 

R11 1.45 5220 

R12 3.175E10 8090 

R13 0.1 See Rate Form 

R14 20000 See Rate Form 

R15 53060 See Rate Form 

 

 


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







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


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
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


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











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












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ii
T

T

j

T

H

T

CO

OCeO

eq

COH

COOH
T

T

eq

NO

ONO
T

T

CAeR

eACR

eACR

T
ACR

G
K

CC
CCAeR

G
K

C
CCAeR

a

OCeOCe

OCeOCe

a

a









2
4242

2

2
4242

422

22

2

2

2

64.103.319595

2775.114500

5.0

15

14

)25.344,max(

1.339
1,0max13

/12

/1

All other rate forms: 
 
 
(order 1 concentrations and coverages) 



Summary 
• Experimental results at 150 oC provide significant additional information about the low 

temperature storage process 

 

• The oxygen storage protocol is quite sufficient for developing kinetics; however, a two site 
storage model might be needed especially when the short cycle effects are modeled 

 

• A three site model for NOx storage is needed perhaps due to NOx storage on ceria 

 

• For this catalyst lean cycle times greater than 600 seconds are needed to reach steady 
state. In some cases times in excess of 2700 seconds seem to be needed 

 

• At low temperature NO and NO2 adsorption do not seem to be strongly connected through 
the NO oxidation step. NO and NO2 have vastly different storage pathways 

 

• Prediction of the temperature dependent NO and NO2 storage appears to be good 

 

• High temperature NOx adsorption appears to be a one site process 

 

• This mechanism appears to describe both the NO and the NO2 adsorption at low 
temperature;  however, experiments for NO2 storage in the absence of O2 would be very 
informative 
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Future Work 

• TPR experiment for NO oxidation for better transient modeling 

• Refine the NOx storage kinetic parameters with additional modeling 

• Calibrate NOx reduction by CO, H2, and C3H6  

• Model the short cycle lab experiments for transient kinetics 

development 

• Simulation of the engine results may be considered 
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Current Mechanism 
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