Development of an LNT reaction mechanism for the BMW 120i LNT catalyst, Phase 1

NOx Adsorption and Oxygen Storage

Acknowledgements

This work was a joint collaboration among

Authors :

- Dominik Artukovic (GTI Stuttgart Gmbh)
- Dick Blint (N₂Kinetics Research, LLC)
- Stuart Daw (ORNL)
- Ryan Dudgeon (GTI)
- Enrico Pautasso (GTI Torino)
- Josh Pihl (ORNL)
- Syed Wahiduzzaman (GTI)

Background

- ORNL purchased a MY2008 BMW 1-series 120i lean gasoline engine vehicle with a N43B20 2.0-liter, 4-cylinder engine with direct injection
- The vehicle was characterized on a chassis dynamometer
- Engine measurement results are available on the CLEERS database
- A core from the LNT was made available for ORNL laboratory testing

Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration

James E. Parks, Vitaly Prikhodko, William Partridge, Jae-Soon Choi, Kevin Norman, Shean Huff and Paul Chambon Oak Ridge National Laboratory

SAE, 2010-01-2267

Includes water and CO2 so WGS is active

CLEERS LNT Protocol

Max 10 minute lean cycle for protocol

Oxygen Storage

Nominal fixed onditions: 30,000 1/hr SV.

Objective: Estab ish inherent oxygen storage (as reflected in reductant demand) exclusive of NOx. Frequency: Run at the beginning of protocol testing for each material.

Run	Temp (de	$(C)^+$	Gas	Lean	Injected	Regen peak	Regen	No. of
No.*			Mix ⁺⁺	period	Reductant	(ppm)	period	cycles
				(s)			(s)	
C1	T _{max}		M1	0	H2	10,000	900	1
C2	T _{max}		M2	60	CO	10,000	30	30
C3	.75(Tmax-Tr	_{nin} +T _{min}	M2	60	CO	10,000	30	30
C4	.5(T _{max} -T _{mi}	n)+Γ _{min}	M2	60	CO	10,000	30	30
C5	.5(T _{max} -T _{mi}	n)+ i _{min}	M3	60	CO	10,000	30	30
C6	.5(T _{max} -T _{mi}	n)+1 _{nin}	M4	60	CO	10,000	30	30
C7	.25(Tmax-Tr	nin)+ min	M2	60	CO	10,000	30	40
C8	T _{min}		M2	60	CO	10,000	30	50

Footnotes:

* Calibration data consists of measured post-reactor values for CO and UEGO output for runs C2-C8 as the inlet gas mixture is cycled retween rich and lean conditions.

 $^{+}$ T_{max} = 500°C and T_{min} = 1:0°C.

++ Gas inlet mix M1= 5% AD, 5% CO2, balance N2 Gas inlet mix M2= 5% H2O, 5% CO2, 10% O2, balance N2 Gas inlet mix M3= 5% H2O, 5% CO2, 5% O2, balance N2 Gas inlet mix M4= 5% H2O, 5% CO2, 1% O2, balance N2

http://cleers.org/focus_groups/private /Lean-

<u>NOx/files/1113847174LNTmap_7_18</u> _05.pdf

Long cycle Cycles

Run	Temp $(\deg C)^+$	Gas	SV	Lean	Reductant*	Regen	Regen	No.
No. ^{<i>a</i>}		Mix ⁺⁺	(1/hr)	period		peak	beriod	of
				(s)		(ppm)* *	#	cycles
1	T _{max}	1	30,000	0	H2	1,000	600	1
2	T _{max}	2/3	30,000	900	CO/H2	1,000	600	3
3	T _{max}	2/4	30,000	900	None	0	600	1
4	T _{max}	1	30,000	0	H2	1,000	600	1
5	.75(T _{max} -T _{min})+T _{min}	2/3	30,000	900	CO/H2	1,000	600	3
6	$.75(T_{max}-T_{min})+T_{min}$	2/4	30,000	900	None	0	600	1
7	T _{max}	1	30,000	0	H2	1,000	600	1
8	.5(T _{max} -T _{min})+T _{min}	2/3	30,000	900	CO/H2	1,000	600	3
9	$.5(T_{max}-T_{min})+T_{min}$	2/4	30,000	900	None	0	600	1
10	T _{max}	1	30,000	0	H2	1,000	600	1
11	$.25(T_{max}-T_{min})+T_{min}$	2/3	30,000	900	CO/H2	1,000	900	5
12	.25(T _{max} -T _{min})+T _{min}	2/4	30,000	900	None	0	600	1
13	T _{max}	1	30,000	0	H2	1,000	600	1
14	.25(T _{max} -T _{min})+T _{min}	2A/3	30,000	900	CO/H2	1,000	900	5
15	.25(T _{max} -T _{min})+T _{min}	2A/4	30,000	900	None	0	600	1
16	T _{max}	1	30,000	0	H2	1,000	600	1
17	T _{min}	2/3	30,000	900	CO/H2	1,000	900	5
18	T _{min}	2/4	30,000	900	None	0	600	1
19	T _{max}	1	30,000	0	H2	1,000	600	1
20	T _{min}	2A/3	30,000	900	CO/H2	1,000	900	5
21	T _{min}	2A/4	30,000	60	None	0	600	1
22	T _{max}	1	30,000	0	H2	1,000	600	1
23	T _{max}	2/3	30,000	900	L	1,000	600	3
24	T _{max}	2/4	30,000	900	None	0	600	1
25	T _{max}	1	30,000	0	H2	1,000	600	1
26	.75(T _{max} -T _{min})+T _{min}	2/3	30,000	900	L	1,000	600	3
27	$.75(T_{max}-T_{min})+T_{min}$	2/4	30,000	900	None	0	600	1
28	T _{max}	1	30,000	0	H2	1,000	600	1
29	$.5(T_{max}-T_{min})+T_{min}$	2/3	30,000	900	L	1,000	600	3
30	$.5(T_{max}-T_{min})+T_{min}$	2/4	30,000	900	None	0	600	1
31	T _{max}	1	30,000	0	H2	1,000	600	1
32	$.25(T_{max}-T_{min})+T_{min}$	2/3	30,000	900	L	1,000	900	5
33	$.25(T_{max}-T_{min})+T_{min}$	2/4	30,000	900	None	0	600	1
34	T _{max}	1	30,000	0	H2	1,000	600	1
35	T _{min}	2/3	30,000	900	L	1,000	900	5
36	T _{min}	2/4	30,000	900	None	0	600	1 /

Protocol Issues

- Original protocol evaluation, Epling, Currier and Yezerets <u>http://www.cleers.org/workshop8/presentations/epling.pdf</u>
- Temperatures ranging from 150 550°C equally spaced in 1/T [K] to facilitate better reaction modeling
 – 150°C, 209°C, 286°C, 393°C, 550°C
- For this application 600 seconds lean was not sufficient to get complete NOx storage at all temperatures
 - Josh reran the long POx protocol and adjusted storage times to reach full NOx storage

New generation is more highly dispersed for most components

CLEERS LNT versus BMW LNT

most significant differences

5/9/2013

ORNL Laboratory Reactor Architecture

- Flow simulations were used to calculate measurement delays
- Measurement delays were calculated to vary from 0.1 second to 0.7 seconds
- For efficiency, the full flow architecture was not used for mechanism development

Modeling Approach

- GT-SUITE software
- 1D, quasi-steady flow solution
- GTI's Advanced Adaptive chemistry solver

Ref: SAE 2007-01-4127

GT-SUITE Advanced Adaptive Chemistry Solver

 Chemical kinetics creates stiff systems. To solve these systems robustly and accurately, the solver must be highly

ADAPTIVE

- The solver uses adaptive :
 - Time steps
 - Axial steps
 - Non-linear iterations
- Highest stability standards are applied:
 - Fully coupled, no lagging
 - BDF (Backward Differentiation Formula) integration methods
- Numerically efficient:
 - 20 2000 times faster than real time depending on kinetics and inlet boundary conditions

Water-Gas-Shift Reaction Calibration

- WGS calibrated at 286°C and 393°C to match steady-state CO/H₂ ratio
 - Inactive at 150°C and 209°C; at chemical equilibrium at 550°C
 Ahrrenius plot of In(rate) vs. 1/T gave kinetic rate constant fit
 - 13 12 y = -8090x + 24.18In(Rate) L1 10 9 0.0014 0.0015 0.0016 0.0017 0.0018 0.0019 1/T [K]

Oxygen Storage Protocol Measurements

- 60 second 10% O₂ storage, 30 second reduction by 1% CO
- Balance of OSC reaction and WGS shows a temperature-dependent oxygen storage capacity
- Water-gas-shift reaction calibrated to match steady-state CO/H₂ ratio

NOx Storage Experimental Data

NO Oxidation from NO Inlet Experiments

- Protocol does not directly provide NO oxidation information
- NO₂/NOx reaches near steady-state in all cases
- NO oxidation kinetics were calibrated using NO₂/NOx ratio

NOx Storage Modeling

Equilibrium coverage method for NOx storage modeling has two major flaws O_{γ} NO

$$BaO \longrightarrow Ba(NO_3)_2$$

$$R = kC_{NOx}C_{O_2}sign((\theta_{eq}(T) - \theta_{NOx})^2, \theta_{eq}(T) - \theta_{NOx}))$$

When $C_{O_2} = 0$, R = 0, which is not supported by the data

MO

- NOx clearly releases from the surface when oxygen is absent
- When $\theta_{eq}(T) < \theta_{NOx}$, R < 0, \rightarrow net rate is NOx release from surface The net rate is still dependent on C_{NOx} , which is not physical

NOx Storage Modeling

Where does the model get NO at time-0??

- NO₂ inlet experiments calibrated first
 - Reverse NO oxidation does not occur at 150°C; negligible at 209°C
- One-step disproportion reaction accounts for outlet NO at 209°C; 150°C approaches theoretical value at steady-state

$$BaO + 3NO_2 \rightarrow Ba(NO_3)_2 + NO$$

NOx Storage Modeling

• Three-step disproportion needed to match peak NO outlet concentration at 150°C $BaO + NO_2 \rightarrow BaO - NO_2$

- Two site storage needed for delayed breakthrough
- Quite possibly the low temperature adsorption is on ceria, see Chuan et. al, Applied Catalysis B: Environmental 119–20 (2012) 183–196

Thick lines: measured Thin lines: model prediction

temperature

NOx Storage Modeling – NO Inlet Experiments

- Current mechanism
 - Two storage sites
 - Storage + release of both NO and NO₂
 - Retains satisfactory results with NO₂ experiments
- Additional work needed
 - Release at 150°C
 - Breakthroughs at 286°C and 393°C

Equilibrium NOx Storage Capacity

 Current model predicts storage capacity both quantitatively and qualitatively

Current Mechanism

 $R1: NO + 0.5O_2 \leftrightarrow NO_2$ $R2: BaO + NO_2 \rightarrow BaO - NO_2$ $R3: BaO - NO_2 \rightarrow BaO_2 + NO$ $R4: BaO_2 + 2NO_2 \rightarrow Ba(NO_3)_2$ $R5: BaO + 2NO + 1.5O_2 \rightarrow Ba(NO_3)_2$ $R6: Ba(NO_3)_2 \rightarrow BaO + 2NO + 1.5O_2$ $R7: Ba(NO_3)_2 \rightarrow BaO + 2NO_2 + 0.5O_2$ $R8: Ba'O + 3NO_2 \rightarrow Ba'(NO_3)_2 + NO$ $R9: Ba'O + 2NO + 1.5O_2 \rightarrow Ba'(NO_3)_2$ $R10: Ba'(NO_3)_2 \rightarrow Ba'O + 2NO + 1.5O_2$ $R11: Ba'(NO_3)_2 \rightarrow Ba'O + 2NO_2 + 0.5O_2$ $R12: H_2O + CO \leftrightarrow H_2 + CO_2$ $R13: Ce_2O_3 + 0.5O_2 \rightarrow Ce_2O_4$ $R14: Ce_2O_4 + CO \rightarrow Ce_2O_3 + CO_2$ $R15: Ce_2O_4 + H_2 \rightarrow Ce_2O_3 + H_2O$

Active Site Densities (moles/m ³ total catalyst volume)				
PGM	2.02			
Ва	64			
Ba'	11			
cerium	84			

Current Mechanism

All rates are turnover number based All concentrations in mol/m³

Reaction	Α	T _a (K)
R1	6.56E7	5212
R2	0.23	0
R3	35.5	0
R4	1.1E10	10350
R5	0.001	0
R6	120900	12360
R7	2.2	5220
R8	3.55	0
R9	5.65	0
R10	231000	12360
R11	1.45	5220
R12	3.175E10	8090
R13	0.1	See Rate Form
R14	20000	See Rate Form
R15	53060	See Rate Form

$$R1 = Ae^{-T_{a}/T} \left(C_{NO}C_{O_{2}}^{0.5} - \frac{C_{NO_{2}}}{K_{eq}} \right) / G$$

$$R12 = Ae^{-T_{a}/T} \left(C_{H_{2}O}C_{CO} - \frac{C_{H_{2}}C_{CO_{2}}}{K_{eq}} \right) / G$$

$$R13 = AC_{O_{2}} \max \left(0.1 - \frac{339.1}{\max(T, 344.25)} - \theta_{Ce_{2}O_{4}} \right)$$

$$R14 = AC_{CO}e^{\left(\frac{-450(1 - 1.775\theta_{Ce_{2}O_{4}} + 2\theta_{Ce_{2}O_{4}}^{2})}{T} \right)}$$

$$R15 = AC_{H_{2}}e^{\left(\frac{-959(1 - 3.03\theta_{Ce_{2}O_{4}} + 1.64\theta_{Ce_{2}O_{4}}^{2})}{T} \right)}$$

All other rate forms:

$$R_j = A e^{-T_a/T} \prod C_i \prod \theta_i$$

(order 1 concentrations and coverages)

Summary

- Experimental results at 150 °C provide significant additional information about the low temperature storage process
- The oxygen storage protocol is quite sufficient for developing kinetics; however, a two site storage model might be needed especially when the short cycle effects are modeled
- A three site model for NOx storage is needed perhaps due to NOx storage on ceria
- For this catalyst lean cycle times greater than 600 seconds are needed to reach steady state. In some cases times in excess of 2700 seconds seem to be needed
- At low temperature NO and NO₂ adsorption do <u>not</u> seem to be strongly connected through the NO oxidation step. NO and NO₂ have vastly different storage pathways
- Prediction of the temperature dependent NO and NO₂ storage appears to be good
- High temperature NOx adsorption appears to be a one site process
- This mechanism appears to describe both the NO and the NO₂ adsorption at low temperature; however, experiments for NO₂ storage in the absence of O₂ would be very informative

Future Work

- TPR experiment for NO oxidation for better transient modeling
- Refine the NOx storage kinetic parameters with additional modeling
- Calibrate NOx reduction by CO, H₂, and C₃H₆
- Model the short cycle lab experiments for transient kinetics development
- Simulation of the engine results may be considered

Current Mechanism

$$G = T(1 + K_1 y_{CO} + K_2 y_{C_3 H_6})^2 (1 + K_3 y_{CO}^2 y_{C_3 H_6}^2) (1 + K_4 y_{NO})$$

$$K_1 = 65.5 \exp(961/T)$$

$$K_2 = 2080 \exp(361/T)$$

$$K_3 = 3.98 \exp(11611/T)$$

$$K_4 = 479000 \exp(-3733/T)$$

 y_j : mole fraction