Experimental Analysis and Kinetics Development of TWC Oxygen Storage

Wednesday, April 10th, 2013

Acknowledgements

- This work was entirely supported by General Motors and is clearance referenced as file number R&D-13447
- Authors :
 - Dick Blint (N2Kinetics Research, LLC)
 - Karthik Ramanathan (Applied Materials, Bangalore, India),
 - Jazaer Dawody (Volvo Technology, Sweden),
 - Louise Olsson (Chalmers University),
 - Wei Li (GM)
 - Ed Bissett (Gamma Technologies),
 - Rauiri Moore (formerly Queens University, Belfast),

Oxygen Storage Redox Process

 $\frac{1}{2}O_2 \text{ or NO} + \text{VOSC} \rightarrow \text{Os} + \text{N}_2$

CO or $H_2 + O_s \rightarrow CO_2$ or $H_2O + V_{OSC}$

where $V_{OSC}\,$ indicates a vacant oxygen site and $O_s\,$ indicates the occupied oxygen site.

O₂ and NO are oxidants for the VOSC and are ultimately reduced

CO and H_2 are reductants for the O_s and are ultimately oxidized

GOAL: Determine competitive rate parameters for these processes on a commercial TWC

The catalyst used is an engine aged (100 hours) commercial three-way catalyst, containing platinum and rhodium (14 g/ft³ Pt and 3.5 g/ft³ Rh) with a cell density of 600 cpi. CeZrO_x was the oxygen storage material at a loading of 75g/L or 2124g/ft³

Experimental Approach

Cyclic steps (leading edge of each step is used for kinetics development):

Oxygen Storage Mechanism (Two site model formulation)

Measured

Reaction	Mechanism	ox/red	site	ΔP
r_1	$2\text{Ce}_2\text{O}_3(\text{S1}) + \text{O}_2 \rightarrow 4\text{CeO}_2(\text{S1})$	ох	S1	–280 kJ/mol
r_2	$\operatorname{Ce}_{2}O_{3}(S1) + \operatorname{NO} \rightarrow 2\operatorname{CeO}_{2}(S1) + 0.5\operatorname{N}_{2}$	ох	S1	–190 kJ/mol
r_3	$2\text{Ce}_2\text{O}_3(\text{S2}) + \text{O}_2 \rightarrow 4\text{CeO}_2(\text{S2})$	QX	S2	-200 kJ/mol
r_4	$\operatorname{Ce}_{2}O_{3}(S2) + \operatorname{NO} \rightarrow 2\operatorname{CeO}_{2}(S2) + 0.5\operatorname{N}_{2}$	ох	× ⁸²	-190 kJ/mol
r_5	$2\text{CeO}_2(\text{S1}) + \text{CO} \rightarrow \text{Ce}_2\text{O}_3(\text{S1}) + \text{CO}_2$	red	S1	-183 kJ/mol
r_6	$2\text{CeO}_2(\text{S1}) + \text{H}_2 \rightarrow \text{Ce}_2\text{O}_3(\text{S1}) + \text{H}_2\text{O}$	X red	S1	-142 kJ/mol
r_7	$2\text{CeO}_2(\text{S2}) + \text{CO} \rightarrow \text{Ce}_2\text{O}_3(\text{S2}) + \text{CO}_2$	red	S2	-188 k) (mol Not
r_8	$2\text{CeO}_2(\text{S2}) + \text{H}_2 \rightarrow \text{Ce}_2\text{O}_3(\text{S2}) + \text{H}_2\text{O}_2(\text{S2}) + \text{H}_2\text{O}_3(\text{S2}) + \text{H}_2\text{O}_3($	K red	<u>\$2</u>	-142 kJ measured

Total Site Density = $a = a_{S1} + a_{S2}$ where

$$a_{S1} = \gamma a \qquad a_{S2} = (1 - \gamma) a$$

 $\gamma = disproportion ratio where \qquad 0 \le \gamma \le 1$

O₂ consumption profile

- 200 °C experiment with 6000 ppm inlet oxygen
- Inlet oxygen profile comes from an empty reactor experiment

Experimental Oxygen Storage Capacity

Concentration pulse expmts	200 °C	300 °C	400 °C	500 °C
1.5k 6k	117.12	130.62	125.69	117.80
3k 3k	128.56	127.74	125.23	119.96
3k 6k	105.46	119.18	112.31	115.72
6k 6k	122.20	126.63	119.20	127.43

- Experimental nomenclature e.g. step of 1500 ppm CO and 6000 ppm O₂
- The value of 121 mole-sites/m³ is used as the characteristic value for this catalyst.
- Standard deviation is 6.8 mole-site/m³ which is an encouraging consistency over the 16 sets of oxidation experiments.

Oxygen Storage Surface Rates (Two site model formulation) $r_{j} = k_{j} c_{s,i} (1 - \theta_{Sk})$ Oxidation (O₂ and NO)

 $r_j = k_j c_{s,i} \theta_{Sk}$ Reduction (CO and H₂)

 $c_{s,i} = cx_{s,i}$ Concentration of the reactant

Sk = S1, S2

 $\theta_{Sk} = \frac{\text{moles CeO}_2(Sk)}{\text{moles CeO}_2(Sk) + 2\text{moles Ce}_2O_3(Sk)}$

O₂ emission profiles

- Temperatures from 200-500 °C
- 6000 ppm inlet oxygen
- Inlet O₂ profile comes from an empty reactor experiment and is shifted to the catalyst measurements

CO₂ formation profile

- 500 °C experiment
- 6000 ppm inlet carbon monoxide
- Background CO₂ profile comes from an empty reactor experiment.

Calculated and Experimental NO Profiles (from 300-600 °C, 2860 ppm inlet NO)

- Two site model
- Inlet profile comes from a tracer helium gas

H₂ emission profiles

- Two site model
- Temperatures from 200-500 °C with 1500 ppm inlet O₂ and 3000 ppm inlet H₂. The inlet H₂ profile comes from an empty reactor experiment.

Calculated and Experimental H₂ Emission profiles

Fitted Rate Constants

•
$$O_2$$

- $R_{S1}^{O2} = 0.5 [O_2][1 - \theta_{S1}]$
- $R_{S2}^{O2} = 0.5 [O_2][1 - \theta_{S2}]$
• NO
- $R_{S1}^{NO} = 7.727 \ e^{\frac{-1287}{T}} [NO][1 - \theta_{S1}]$
- $R_{S2}^{NO} = 6.936 x 10^6 \ e^{\frac{-13870}{T}} [NO][1 - \theta_{S2}]$
• CO
- $R_{S1}^{CO} = 2.084 x 10^4 \ e^{\frac{-7490}{T}} [CO][\theta_{S1}]$
- $R_{S2}^{CO} = 1.168 x 10^4 \ e^{\frac{-9821}{T}} [CO][\theta_{S2}]$
• H_2
- $R_{S1}^{H_2} = 0.613 \ [H_2][\theta_{S1}]$

$$- R_{S2}^{H_2} = 93.44 e^{\frac{-5009}{T}} [H_2] [\theta_{S2}]$$

Where θ_{S1} and θ_{S2} are the surface coverages of site 1 and site 2 respectively

Calculated Coverage Profiles for both Sites (O₂, 300 °C, 3000 ppm)

For the Oxidants

- Oxidation kinetics of O₂ are quite fast and the experiments are able to resolve only a lower limit on the rate constant so a temperature dependence could not be determined.
- NO kinetic parameters are:
 - somewhat faster than the O_2 oxidation rates
 - show a temperature dependence for the second site (S2) rates
 - an apparent temperature dependence for the faster (S1) oxidation rate.
- The spatially dependent oxidation state of the ceria during oxidation shows a front to rear progression
- Surface reactions are so fast that the inlet reactant does not exit until almost all the fast S1 sites along the full length of the catalyst has been either oxidized or reduced.
- Reactions of these exhaust gases in monolith core are dependent on the spatial distribution of the oxidized ceria in the monolith.

For the Reductants

- A two site model is needed to predict the CO₂ experimental profiles measured during the CO reduction step
- Reduction kinetics using CO as the reductant:
 - Show a clear temperature dependence for the reactions on the S1 sites with a fitted E_a of slightly more than 62 kJ/mol.
 - The S2 reactions are slower than the S1 reactions and show a slightly more pronounced E_a of almost 82 kJ/mol.
- For the reduction with H₂:
 - There is little evidence of a temperature dependence for the S1 rates and that rate is similar to the CO rate
 - The S2 rate does show distinct temperature dependence, with a E_a of approximately 42 kJ/mol. This rate is faster than the CO S2 rate
- It is observed that the oxidation rates appear to be uniformly faster than the reduction reactions; however both sets of reactions are quite fast.
- I speculate that the oxygen storage sites have a continuum of energetics which are monotonic, but not linear