Modeling Needs for SIDI Lean NOx Aftertreatment Systems

Norman Brinkman General Motors R&D Center

10th CLEERS Workshop May 2, 2007

Outline

- GM propulsion strategy
- Fuel economy technology rollout for SI engines
- SIDI technology description
- Key issues with SIDI Lean NOx Systems
 - Mercedes and BMW production vehicles in Europe
- Modeling needs for SIDI lean NOx systems

Advanced Propulsion Technology Strategy

SI Engine Technology Rollout

Summary of Stratified SIDI Engines

Wall-Guided

- + good ignition stability
- small fuel economy gain
- requires lean NOx catalyst & low S fuel
- pool fires and smoke

Status:

- In Production
- Limited regional markets
- Not expanding

- random misfires
- lean NOx catalyst (low S fuel)
- + lower soot and hydrocarbon emissions
- + wider stratified-charge operating range
- + 10 15% better fuel economy than PFI

Status:

DC and BMW in Production with Piezo Inj. Research with Multihole Injectors

Key Issues for SIDI Lean Aftertreatment Systems

- Fuel economy penalties related to aftertreatment system
 - Limitations due to catalyst temperature windows
 - Fuel penalty for system warmup
 - Homogeneous operation at high loads
- Ability to meet current and future emissions standards
 - Thermal aging
 - Impact of sulfur
 - Unregulated emissions
 - Particulates
- System cost
 - Platinum group metal (PGM) usage

Exhaust Configuration of Mercedes-Benz CLS 350 CGI

- Dual pipes and rear location keep NOx catalysts cool
 - Cause slow warmup after cold start
 - Rear catalyst location required to limit aging at maximum speed

Mercedes exhaust temperatures at maximum speed

- Lean NOx catalyst positioned where maximum inlet exhaust temperature about 770 °C
 - Keeps maximum catalyst temperature below 830°C

Mercedes fast catalyst warmup strategy

- Combustion strategy required to heat catalysts system
 - Multiple injections and retarded spark
 - Late combustion event produces high exhaust temperature
 - Increases fuel consumption

Catalyst system temperatures during NEDC

- Combustion strategy provides fast warmup of 3-way catalyst
- Slow warmup of lean NOx catalyst requires homogenous combustion for 150 s.
- Low 3-way catalyst temperature leads to high HC emissions
- <u>GM</u>

Homogeneous idle added to manage temperatures

- Addition of homogeneous idle used to maintain 3-way HC control
- Additional fuel penalty impacts cost-benefit of stratified charge system

Exhaust architecture of BMW HPI I6 3.0L

• BMW's I-6 architecture also designed to keep lean NOx catalyst cool

BMW system NEDC catalyst temperatures

Slow warmup of lean NOx catalyst, despite aggressive heating

What about gasoline engine particulates? - under consideration in Europe

- Data with some lean engine operation show distributions with numbers of small particles
- No proven technology for gasoline engine control

Modeling needs for SIDI systems

- 1. 3-way catalysts
 - Impact on fast lightoff and HC emissions
 - Temperature
 - PGM content
 - Cell density
 - Space velocity
 - Aging
 - Feedgas concentration

Modeling needs for SIDI systems (cont.)

- 2. Lean NOx storage catalysts
 - Impacts on NOx storage
 - Temperature
 - PGM content
 - Cell density
 - Space velocity
 - Aging
 - Feedgas concentrations
 - NOx \rightarrow N2 regeneration selectivity
 - Temperature
 - PGM content
 - Space velocity
 - Aging
 - Feedgas concentrations
 - Sulfation/desulfation
 - Other lean NOx technologies, such as urea SCR

Modeling needs for SIDI systems (cont.)

- 3. Particle control
 - Filter trapping efficiency and pressure drop
 - Particle size and number
 - Substrate characteristics
 - Loading
 - Regeneration kinetics
 - Temperature
 - Soot characteristics
 - Feedgas concentration
 - Space velocity
 - Innovative approaches to particle control
 - Low pressure drop
 - High efficiency on small particles

Modeling needs for SIDI systems (cont.)

- 4. Complete exhaust system
 - System architecture
 - Catalyst location
 - Catalyst properties
 - Pressure drop
 - Particle control
 - Interactions between components
 - Active thermal management systems
 - Performance of complete system
 - Emissions performance on and off cycle
 - High precision required (future standards)
 - Nonregulated emissions
 - Fuel economy on and off cycle
 - Optimizing control strategy
 - Optimization to reduce system cost

Diagram 9: Configuration of the exhaust system of the Mercedes-Benz CLS 350 CGI

Summary

- Spray-guided SIDI stratified charge systems are a key technology to improve fleet fuel economy
- Large-scale introduction requires innovation to achieve future emissions levels while improving fuel economy at a reasonable cost
- Optimization of SIDI lean aftertreatment requires complex interactions between engine controls, exhaust architecture, and catalyst design
- Improved component and system models are critical to success of SIDI stratified charge system design

