Performance Characterization of Cu/Zeolite and Fe/Zeolite Catalysts for the SCR of NOx

Giovanni Cavataio
James Girard, Joseph Eli Patterson Clifford Montreuil, Yisun Cheng, and Christine K. Lambert
Ford Motor Company
Research and Innovation Center

10th DOE Crosscut Workshop on Lean Emissions Reduction Simulation
May 1st – 3rd, 2007
University of Michigan – Dearborn
Motivation

The durability requirements and diverse operating conditions of light-duty compared to heavy-duty vehicles make it necessary to understand the differences between SCR formulations.

Parameters studied include:

- Durability to active DPF regenerations.
- Robustness to occasional over-temperature.
- Impact of NO₂/NOx, O₂ level, SV, and NH₃ storage.
- Influence due to sulfur and hydrocarbon poisoning.
Laboratory Characterization of Cu/zeolite and Fe/zeolite SCR Formulations

OUTLINE:
1. SCR Catalyst Description
2. Durability/Robustness
3. Factors Affecting SCR Activity
SCR Catalyst Description

1) **Cu/Zeolite**
 - 400/6.5 CPSI
 - 2006 state of the art supplier formulation
 - Optimized zeolite formulation for stabilizing Cu

2) **Fe/Zeolite**
 - 400/6.5 CPSI
 - 2006 state of the art supplier formulation
 - Optimized zeolite formulation for stabilizing Fe

NOTE: Cu and Fe SCR formulated with the same zeolite-type.

3) **Vanadium Based**
 - Commercially available
 - V_2O_5-WO_3 on corrugated TiO$_2$ carrier
Laboratory Characterization of Cu/zeolite and Fe/zeolite SCR Formulations

OUTLINE:
1. SCR Catalyst Description
2. Durability/Robustness
3. Factors Affecting SCR Activity
Standard Hydrothermal Aging (HTA)

Purpose: Develop hydrothermal aging (HTA) representative of time at temperature conditions typical during active DPF regeneration events.

<table>
<thead>
<tr>
<th>Hydrothermal Aging</th>
</tr>
</thead>
<tbody>
<tr>
<td>14% O_2</td>
</tr>
<tr>
<td>4.5% H_2O</td>
</tr>
<tr>
<td>5% CO_2</td>
</tr>
<tr>
<td>0 ppm SO_2</td>
</tr>
<tr>
<td>balance N_2</td>
</tr>
<tr>
<td>Flowrate = 6.44L/min</td>
</tr>
<tr>
<td>Sample Size = 1.0” D x 1.0”L</td>
</tr>
<tr>
<td>Space Velocity = 30,000/hr</td>
</tr>
<tr>
<td>Temperature = 670°C</td>
</tr>
<tr>
<td>Time = 64 hrs</td>
</tr>
<tr>
<td>Standard aging unless otherwise noted</td>
</tr>
</tbody>
</table>
Standard SCR Baseline Evaluation

Purpose: Determine activity window for NOx conversion versus temperature for the worst case NO only evaluation (0% NO\textsubscript{2}/NOx ratio).

<table>
<thead>
<tr>
<th>Steady State Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>350 ppm NO</td>
</tr>
<tr>
<td>350 ppm NH\textsubscript{3}</td>
</tr>
<tr>
<td>14% O\textsubscript{2}</td>
</tr>
<tr>
<td>4.5% H\textsubscript{2}O</td>
</tr>
<tr>
<td>5% CO\textsubscript{2}</td>
</tr>
<tr>
<td>0 ppm SO\textsubscript{2}</td>
</tr>
<tr>
<td>bal N\textsubscript{2}</td>
</tr>
<tr>
<td>S.V. = 30,000 hr-1</td>
</tr>
<tr>
<td>T = 150 - 600°C</td>
</tr>
<tr>
<td>ANR = 1.0 (NH\textsubscript{3}/NOx)</td>
</tr>
</tbody>
</table>

Standard evaluation unless otherwise noted
Base metal/zeolite SCR formulations were found to be more thermally stable than a vanadium-based formulation at temperatures typical of diesel applications.
SCR Reaction Activity Profile

NOx and NH₃ Conversion, N₂O Formation, and NH₃ Slip

Cu/zeolite

Fe/zeolite

- Cu/zeolite is more activity below 350°C and generates high levels of N₂O.
- Fe/zeolite is more activity above 350°C and generates very low N₂O.

4NH₃ + 4NO + O₂ → 4N₂ + 6H₂O "Standard" Reaction

CLEERS 2007
Thermal Durability as a Function of Mileage

Effect of thermal aging at 670°C

Cu/zeolite

- Cu/zeolite deactivates from 80% to 60% NOx conversion at 175°C.

Fe/zeolite

- Fe/zeolite deactivates from 70% to 50% NOx conversion at 225°C.
Impact of O_2 and H_2O Levels During Aging

HTA 64hr/670°C: 2% O_2/10% H_2O vs. 14% O_2/5% H_2O

Cu/zeolite

Fe/zeolite

- Vehicle high load and cDPF events can cause low O_2 and high H_2O levels.
- Both Cu and Fe/zeolite show mild deactivation with 2% O_2 & 10% H_2O.
HTA with Longer Time & Lower Temp.

64hrs/670°C vs. 2000hrs/550°C

Cu/zeolite

- Cu/zeolite deactivates significantly at low T and improves at high T.

Fe/zeolite

- Fe/zeolite deactivates slightly at low temp. and remains stable at high T.
HTA with Shorter Time & Higher Temp.
(Robustness to Occasional DPF Over-Temperature)

Determination of Never-To-Exceed (NTE) Temperature

Cu/zeolite

Fe/zeolite

- Cu/zeolite deactivates rapidly with increasing temperature, NTE = 775°C.
- Fe/zeolite is much more stable, NTE = 925°C.
Laboratory Characterization of Cu/zeolite and Fe/zeolite SCR Formulations

OUTLINE:
1. SCR Catalyst Description
2. Durability/Robustness
3. Factors Affecting SCR Activity
Standard Aging and Evaluation Conditions

Purpose: Determine SCR temperature activity window

<table>
<thead>
<tr>
<th>Hydrothermal Aging</th>
<th>Steady State Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>14% O₂</td>
<td>350 ppm NO</td>
</tr>
<tr>
<td>4.5% H₂O</td>
<td>(NO₂/NOₓ = 0%)</td>
</tr>
<tr>
<td>5% CO₂</td>
<td>350 ppm NH₃</td>
</tr>
<tr>
<td>0 ppm SO₂</td>
<td>14% O₂</td>
</tr>
<tr>
<td>bal N₂</td>
<td>4.5% H₂O</td>
</tr>
<tr>
<td>S.V. = 30,000 hr⁻¹</td>
<td>5% CO₂</td>
</tr>
<tr>
<td>T=670°C</td>
<td>0 ppm SO₂</td>
</tr>
<tr>
<td>64 hrs</td>
<td>bal N₂</td>
</tr>
<tr>
<td></td>
<td>S.V. = 30,000 hr⁻¹</td>
</tr>
<tr>
<td></td>
<td>T = 150 - 600°C</td>
</tr>
<tr>
<td></td>
<td>ANR = 1.0 (NH₃/NOₓ ratio)</td>
</tr>
</tbody>
</table>

Aging and evaluation conditions unless otherwise noted.
Effect of NO\textsubscript{2}/NO\textsubscript{x} Ratio on Activity

NO\textsubscript{x} Conversion vs. Temperature

- NO\textsubscript{x} performance is significantly improved for both Cu and Fe SCRs.
- At low T, Fe/zeolite is more sensitive to the NO\textsubscript{2}/NO\textsubscript{x} ratio than Cu.
Effect of O₂ Concentration (2-14% O₂)

NOx Conversion vs. Temperature

Cu/zeolite

Fe/zeolite

● Both Cu and Fe light-off NOx activity NOx drops as the [O₂] decreases.

Recall: 4NH₃ + 4NO + O₂ → 4N₂ + 6H₂O "Standard" Reaction

● High T NOx conversion is not affected in O₂ range tested (2-14%)
NH₃ Oxidation in the Absence of NOx

NH₃ Oxidation and By-product Formation vs. Temperature

Cu/zeolite

- Cu/zeolite is active for NH₃ oxidation above 300°C (95% selectivity to N₂).
- Fe/zeolite demonstrates similar behavior but much less active.

Fe/zeolite
Effect of Increasing Space Velocity

NOx Conversion and NH₃ Slip vs. Temperature

Cu/zeolite

Fe/zeolite

- Cu/zeolite NOx activity is reduced at low T but unaffected above 425°C. In addition, no NH₃ slip is observed above 450°C.
- Fe/zeolite NOx activity is reduced for the entire temperature range while NH₃ slip becomes more of an issue.
Base-metal/zeolites store high levels of NH₃ at low T and less as a f (T).

Cu/zeolite stores up 2x more NH₃ than the Fe/zeolite formulation.
Impact of NH₃ Exposure Level

NOx Conversion vs. Temperature

Cu/zeolite

Fe/zeolite

- Exposing SCR catalysts to less than the saturated value of NH₃ results in a loss of NOx performance.
- Cu/zeolite is more sensitive to NH₃ storage than Fe/zeolite.
Sulfur Poisoning and Regeneration

NOx Conversion vs. Temperature

Cu/zeolite
20% NO\textsubscript{2}/NO\textsubscript{x}
Fe/zeolite

- 29g S/L exposure (24hrs ~ 120k miles) was more significant on the Cu/zeolite than Fe/zeolite.
- NOx performance recovered after short 650°C lean exposure.
DeSOx was achieved by temperature programmed desorption in the presence of oxygen.

Consistent with active DPF regenerations, Cu/zeolite requires 650°C to remove most of the sulfur.
Hydrocarbon Poisoning at 200°C

NOx Conversion vs. Elapsed Time

Cu/zeolite

- 225ppm Benzene
- 700ppm Propylene
- 50ppm n-Decane

Fe/zeolite

- HC Injection turned on

T = 200°C

- HC exposure significantly impacts NOx conversion for both Cu and Fe.
- n-Decane is most severe for Cu while benzene is most severe for Fe.
Hydrocarbon Poisoning at 300°C

NOx Conversion vs. Elapsed Time

Cu/zeolite

Fe/zeolite

- HC exposure results in an instant inhibition of the NO + NH₃ SCR reaction.
- Propylene is most severe for Cu while benzene is most severe for Fe.
Summary

- Both Cu and Fe formulations are durable under typical DPF generations conditions (<670°C).

- Cu rapidly deactivates above 750°C while Fe rapidly deactivates above 900°C.

- Cu is more active at low temperature whereas Fe is more active at high T.

- Cu is least sensitive to NO₂ to achieve high NOx conversion.

- Both Cu and Fe oxidize NH₃ with high selectivity to N₂.

- At high SV, Fe slips excess NH₃ while Cu does not.

- Cu requires a larger amount of pre-stored NH₃ to achieve high NOx conversion at low temperature.

- Cu and Fe are adversely impacted by sulfur and HC. However, poisoning is reversible with frequent active DPF regenerations.
Thank you for your attention!

QUESTIONS?

Giovanni Cavataio, Ph.D.
Technical Expert, Diesel Aftertreatment
Ford Research and Innovation Center
jcavatai@ford.com