JOHN AND WILLIE LEONE FAMILY DEPARTMENT OF

ENERGY AND MINERAL ENGINEERING

COLLEGE OF EARTH AND MINERAL SCIENCES

EMISSIONS FROM ETHANOL – GASOLINE BLENDS: PHYSICAL & CHEMICAL CHARACTERIZATION OF SIDI PARTICULATES

Chethan K. Gaddam, Randy L. Vander Wal

2012 DOE Crosscut Workshop on Lean Emissions Reduction Simulation April 30th – May 2nd, 2012 University of Michigan – Dearborn

Acknowledgements: (Project title: SIDI Fuel Neutral Particulate Study)

INTRODUCTION

SIDI engine deployment and particle emissions

- Health effects asthma, lung cancer, respiratory & cardiovascular diseases
- Climate effects scattering & absorbing light, cloud nuclei

Blending ethanol with gasoline

- Octane enhancement
- EU promotes bio-fuel use (5.75% by 2010 and 10% by 2020)
- Ethanol trade increase 25 fold by 2020

MOTIVATION

OEMs want to anticipate future requirements

when filtration is required

Nature of regulations (EU, California ?)

If particulate filtration is required

Clues to adaptation of DPF technology

Particulate size and shape

Remove volatile content

SIDI particle morphology

▷Mathis et al. (2004) – volatility of 20 nm dia. particles

▷Barone et al. (2012) – primary particle & droplet dia.

MOTIVATION

Nanostructure

- It will control oxidation characteristics
- Convolved with soot surface chemistry

Aggregate Morphology

 Dictates surface area available for heterogeneous chemistry

Aggregate Size

Affects light absorption and scattering properties of soot, important for radiative forcing calculations.

OBJECTIVES

Systematic characterization of SIDI soot

- Particle size distribution
- Soot morphology
- Nanostructure
- Oxidative reactivity
- Chemical composition

OUTLINE

- Introduction
- Objectives
- Approach
- Experimental setup
- Results
- Summary & Implications

APPROACH

SIDI ENGINE

Engine Parameter	Units	Value
Compression Ratio	[-]	11.97
Bore	[mm]	85.96
Stroke	[mm]	94.6
Displacement	[cm ³]	549
Clearance Volume	[cm ³]	50
Connection Rod Length	[mm]	152.4

Gasoline direct injected Ricardo Hydra

Single cylinder research engine

Four-stroke engine

EXPERIMENTAL SETUP

TESTED FUELS & TEST MATRIX

3 fuels tested

- ▷ EPA Tier II EEE
- E20 (denatured ethanol:EEE, 20%:80% by volume)
- E85 (denatured ethanol:EEE, 85%:15% by volume)

Operating Condition	Speed	Injection Timing	Fuel Quantity	AF	Spark Advance	Injection Pressure	Intake Temp.	Oil Temp.	Coolant Temp.
	[RPM]	[°bTDC]	[mg/cyc]	[-]	[°bTDC]	[MPa]	[°C]	[°C]	[°C]
EEE									
EOI									
280	2100	280	11	15	25	11	45	90	90
Rich	2100	280	11	13	25	11	45	90	90
Lean	2100	280	11	17	25	11	45	90	90
Late EOI	2100	220	11	15	25	11	45	90	90
Heavy Load	2100	280	21	15	18	11	45	90	90

Engine Operating Conditions

PM sampling was preplanned

 Wide range of operating conditions with changes to A/F ratio, Load, Injection timing

Results

Physical Characterization

AGGREGATE MORPHOLOGY

EEE - EOI 280

EEE – Lean

E20 - EOI 280

E20 – Lean

E85 – EOI 280

 \triangleright

EEE and E20 – open, branched \triangleright Growth after aggregation for E85

E85 – dense, compact \triangleright

Aggregate Morphology

 Denser, compact
 nucleation density
 rate of concurrent/ subsequent surface mass growth

Significant variation in primary particle size within aggregate

PRIMARY PARTICLE SIZE DISTRIBUTIONS

- Mean particle size ~14 51 nm
 - Diesel soot ~19 35 nm
- Primary particle size
 - Strong variation with fuel blend

Lee et al., 2002; Wentzel et al., 2003; Park et al., 2004; Zhu et al., 2005; Neer and Koylu, 2006; Barone et al., 2011

FRACTAL DIMENSION

Engine Parameter	Fractal Dimension
Late EOI	2.20
Rich	2.37
EOI 280	1.69
Lean	1.86
Heavy Load	2.06

M. Lapuerta et al., J. Colloid and Interface Science, July 2006.

NANOSTRUCTURE

EEE

Late EOI Highly curved, amorphous

EOI 280 Better order with short but recognizable lamella

Rich Amorphous

Lean Disorganized, but not chaotic

- Nanostructure graphene
 layer plane dimensions,
 their tortuosity and relative
 orientation
- Nanostructure was generally amorphous or lacked significant order

Heavy Load Recognizable nanostructure

NANOSTRUCTURE

E20 – EOI 280

E20 – MBT -15

E20 – Lean

- Nanostructure is mostly amorphous & non-structured
- Across test conditions for given fuel, nanostructure largely unvarying, with one exception

EOI 280 CONDITION

35

EOI 280 CONDITION

- Strong variation as evidenced by tortuosity distributions
- E85: More tortuosity indicative of high curvature
- Implications of fuel oxygen content:
 - a) soot forming processes might be delayed
 - b) chemistry of soot formation is altered
 - c) overall soot production is lessened

PARTIAL OXIDATION

E85 – EOI 280 – after oxidation at 550 °C

First [known] observation for soot oxidation from a Gasoline engine

- Evidence of oxidation induced structural change
- HRTEM and fringe analysis repeated after partial oxidation of EOI 280 sample (E85 fuel)

COMPARATIVE FRINGE ANALYSIS

Lamella become more longer, flattened

Results

Chemical Characterization

MOTIVATION

SPLAT II – significant organic content (40%)

Two VPR methods

Thermodenuder &
 Evaporative chamber

No difference

Spectroscopy Tech.

> XPS (Surface..)

FTIR-ATR (Bulk..)

XPS

FTIR-ATR ANALYSIS

- Significant volumeaveraged organic content
- Variation with condition suggests different chemistries
 - More variation as a function of engine operation
 - Even within a single aggregate
- C-H (aliphatic) more profound in Fuel-rich conditions

SUMMARY & IMPLICATIONS

Primary Particle Analyses

Variation of primary particle size as a function of condition, fuel

Aggregate Morphology

- Fuel rich conditions: aggregates that are more compact
- E85: high fusion between particles

HRTEM & Fringe Analyses

General lack of structure, across range of conditions & fuel blends

Partial Oxidation

- Distinct change in nanostructure during oxidation
- Lamella become more longer, flatter

FTIR – ATR Analyses

- Indicates significant matrix-distributed organic content
- Fuel rich conditions led to soots with higher organic content

ACKNOWLEDGEMENTS

Mark Stewart, Alla Zelenyuk, Andrea Strzelec, Paul Reitz

Dr. David Foster, Dr. David Rothamer, Mitchell Hageman, Axel Maier

Kushal Narayanaswamy, Arun Solomon, Paul Najt

Dr. Joe Kulik (HRTEM), Dr. Trevor Clarke (TEM), Dr. Vince Bojan (XPS), Dr. Josh Stapleton (FTIR-ATR)

Chung-Hsuan Huang (data analysis & discussions), Dr. Boehman & Eduardo Barrientos (TGA)

THANK YOU

10000

