EMISSIONS FROM ETHANOL – GASOLINE BLENDS: PHYSICAL & CHEMICAL CHARACTERIZATION OF SIDI PARTICULATES

Chethan K. Gaddam, Randy L. Vander Wal

2012 DOE Crosscut Workshop on Lean Emissions Reduction Simulation
April 30th – May 2nd, 2012
University of Michigan – Dearborn

Acknowledgements:
(Project title: SIDI Fuel Neutral Particulate Study)
INTRODUCTION

- **SIDI engine deployment and particle emissions**
  - Fuel efficiency
  - Reduce CO₂ emissions
  - PN emissions

- **Gasoline exhaust particles**
  - Health effects – asthma, lung cancer, respiratory & cardiovascular diseases
  - Climate effects – scattering & absorbing light, cloud nuclei

- **Blending ethanol with gasoline**
  - Octane enhancement
  - EU promotes bio-fuel use (5.75% by 2010 and 10% by 2020)
  - Ethanol trade – increase 25 fold by 2020

---

J. P. Szybist et al., 2011; D. D. Dutcher et al., 2011; J.M. Storey 2010
**MOTIVATION**

- OEMs want to anticipate future requirements
  - when filtration is required
  - Nature of regulations (EU, California ?)
- If particulate filtration is required
  - Clues to adaptation of DPF technology
  - Particulate size and shape
- Remove volatile content

- SIDI particle morphology
  - Mathis et al. (2004) – volatility of 20 nm dia. particles
**Nanostructure**
- It will control oxidation characteristics
- Convolved with soot surface chemistry

**Aggregate Morphology**
- Dictates surface area available for heterogeneous chemistry

**Aggregate Size**
- Affects light absorption and scattering properties of soot, important for radiative forcing calculations.
OBJECTIVES

▶ Systematic characterization of SIDI soot
  ▶ Particle size distribution
  ▶ Soot morphology
  ▶ Nanostructure
  ▶ Oxidative reactivity
  ▶ Chemical composition
OUTLINE

- Introduction
- Objectives
- Approach
- Experimental setup
- Results
- Summary & Implications
APPROACH

SIDI Particulates

Physical Characterization
- TEM
- TGA

Chemical Characterization
- FTIR-ATR
- XPS
Gasoline direct injected Ricardo Hydra

- Single cylinder research engine
- Four-stroke engine

### Engine Parameter

<table>
<thead>
<tr>
<th>Engine Parameter</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression Ratio</td>
<td>[-]</td>
<td>11.97</td>
</tr>
<tr>
<td>Bore</td>
<td>[mm]</td>
<td>85.96</td>
</tr>
<tr>
<td>Stroke</td>
<td>[mm]</td>
<td>94.6</td>
</tr>
<tr>
<td>Displacement</td>
<td>[cm³]</td>
<td>549</td>
</tr>
<tr>
<td>Clearance Volume</td>
<td>[cm³]</td>
<td>50</td>
</tr>
<tr>
<td>Connection Rod Length</td>
<td>[mm]</td>
<td>152.4</td>
</tr>
</tbody>
</table>
EXPERIMENTAL SETUP
3 fuels tested

- EPA Tier II EEE
- E20 (denatured ethanol:EEE, 20%:80% by volume)
- E85 (denatured ethanol:EEE, 85%:15% by volume)

### Engine Operating Conditions

> PM sampling was pre-planned

> Wide range of operating conditions with changes to A/F ratio, Load, Injection timing

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EOI 280</td>
<td>2100</td>
<td>280</td>
<td>11</td>
<td>15</td>
<td>25</td>
<td>11</td>
<td>45</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Rich</td>
<td>2100</td>
<td>280</td>
<td>11</td>
<td>13</td>
<td>25</td>
<td>11</td>
<td>45</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Lean</td>
<td>2100</td>
<td>280</td>
<td>11</td>
<td>17</td>
<td>25</td>
<td>11</td>
<td>45</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Late EOI</td>
<td>2100</td>
<td>220</td>
<td>11</td>
<td>15</td>
<td>25</td>
<td>11</td>
<td>45</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Heavy Load</td>
<td>2100</td>
<td>280</td>
<td>21</td>
<td>15</td>
<td>18</td>
<td>11</td>
<td>45</td>
<td>90</td>
<td>90</td>
</tr>
</tbody>
</table>
Results

Physical Characterization
AGGREGATE MORPHOLOGY

- EEE and E20 – open, branched
- E85 – dense, compact
- Growth after aggregation for E85
AGGREGATE MORPHOLOGY

- Denser, compact
  - nucleation density
  - rate of concurrent/subsequent surface mass growth

- Significant variation in primary particle size within aggregate

[Images of aggregate morphologies at different loads and densities]
Mean particle size ~14 – 51 nm
  - Diesel soot ~19 – 35 nm

Primary particle size
  - Strong variation with fuel blend

Lee et al., 2002; Wentzel et al., 2003; Park et al., 2004; Zhu et al., 2005; Neer and Koylu, 2006; Barone et al., 2011
**Fractal Dimension**

- Aggregate – fractal like structures
- Irregularity – fractal dimension, $D_f$
- Power law relationship $n_{po} = K_f \left( \frac{d_g}{d_{po}} \right)^{D_f}$

Nanostructure – graphene layer plane dimensions, their tortuosity and relative orientation

Nanostructure was generally amorphous or lacked significant order.
Nanostructure is mostly amorphous & non-structured

Across test conditions for given fuel, nanostructure largely unvarying, *with one exception*
EOI 280 Condition

Vander Wal et al., 2003; Kuen et al., 2011
EOI 280 Condition

- Strong variation as evidenced by tortuosity distributions
- E85: More tortuosity – indicative of high curvature
- Implications of fuel oxygen content:
  a) soot forming processes might be delayed
  b) chemistry of soot formation is altered
  c) overall soot production is lessened
**PARTIAL OXIDATION**

- First [known] observation for soot oxidation from a Gasoline engine
- Evidence of oxidation – induced structural change
- HRTEM and fringe analysis repeated after partial oxidation of EOI 280 sample (E85 fuel)

E85 – EOI 280

E85 – EOI 280 – after oxidation at 550 °C
COMPARATIVE FRINGE ANALYSIS

Distinct change in nanostructure during oxidation

- Lamella become more longer, flattened
Results

Chemical Characterization
**MOTIVATION**

- SPLAT II – significant organic content (40%)
- Two VPR methods
  - Thermodenuder & Evaporative chamber
  - No difference
- Spectroscopy Tech.
  - XPS (Surface..)
  - FTIR-ATR (Bulk..)
Substantial organic content
Consistent with TEM results
FTIR-ATR Analysis

- Significant volume-averaged organic content
- Variation with condition – suggests different chemistries
  - More variation as a function of engine operation
  - Even within a single aggregate
- C-H (aliphatic) – more profound in Fuel-rich conditions
SUMMARY & IMPLICATIONS

- **Primary Particle Analyses**
  - Variation of primary particle size as a function of condition, fuel

- **Aggregate Morphology**
  - Fuel rich conditions: aggregates that are more compact
  - E85: high fusion between particles

- **HRTEM & Fringe Analyses**
  - General lack of structure, across range of conditions & fuel blends

- **Partial Oxidation**
  - Distinct change in nanostructure during oxidation
  - Lamella become more longer, flatter

- **FTIR – ATR Analyses**
  - Indicates significant matrix-distributed organic content
  - Fuel rich conditions led to soots with higher organic content
ACKNOWLEDGEMENTS

Mark Stewart, Alla Zelenyuk, Andrea Strzelec, Paul Reitz

Dr. David Foster, Dr. David Rothamer, Mitchell Hageman, Axel Maier

Kushal Narayanaswamy, Arun Solomon, Paul Najt

Dr. Joe Kulik (HRTEM), Dr. Trevor Clarke (TEM), Dr. Vince Bojan (XPS), Dr. Josh Stapleton (FTIR-ATR)

Chung-Hsuan Huang (data analysis & discussions), Dr. Boehman & Eduardo Barrientos (TGA)
THANK YOU