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Motivation and Objective

* Lean NO, Traps (LNTs) are a leading candidate NO, control technology for lean burn gasoline and light duty diesel

* Controlling N,O emissions (a greenhouse gas) from LNT catalysts is important to meet future regulations such as CARB LEVIII
* Mechanisms of N,O formation during LNT operation are not well understood and no predictive models are available

* We are investigating N,O formation pathways during LNT regeneration and integrating them into a global kinetic model
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e Extend kinetics by integrating new findings
PGM redox state

Reduction of nitrates vs. oxygen storage capacity (OSC)

* Simulations guide experiments
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Redox States of Platinum Group Metal (PGM) Sites Determine Local N-Selectivity
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Conclusions
* Main source of N,O is reduction of nitrates and not reduction of OSC with NH, T e
* Local N-selectivity depends on PGM redox state: partially reduced sites - N,O, N, vs. fully reduced sites > NH;, N, AR "

* Local N-selectivity depends on amount and stability of stored NO,: more stable nitrates - lower N,O due to more NO, being reduced on fully reduced PGM
* Axial redistribution of stored NO, during regeneration contributes to the global N,O selectivity
* Less effective reductants in rich mixture reach unregenerated region first (HCs > CO > NH, > H,) - increased N,O formation
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