N₂O Formation Pathways during the Regeneration of Lean NO₂ Trap

Jae-Soon Choi, Josh A. Pihl, William P. Partridge, Mi-Young Kim, C. Stuart Daw

Oak Ridge National Laboratory Petr Kočí, Šárka Bártová, Miloš Marek Institute of Chemical Technology, Prague

Motivation and Objective

• Lean NO_x Traps (LNTs) are a leading candidate NO_x control technology for lean burn gasoline and light duty diesel • Controlling N₂O emissions (a greenhouse gas) from LNT catalysts is important to meet future regulations such as CARB LEVIII • Mechanisms of N₂O formation during LNT operation are not well understood and no predictive models are available • We are investigating N₂O formation pathways during LNT regeneration and integrating them into a global kinetic model

Approach

Bench reactor evaluation

Reductant sweep *Temperature sweep*

Composition

Modeling

- Global kinetic model
- Extend kinetics by integrating new findings

Redox States of Platinum Group Metal (PGM) Sites Determine Local N-Selectivity

Partially reduced PGM sites responsible for N₂O

Approximation of local N-selectivity in dependence on PGM redox state

 NH_3 intermediate + OSC $\not\models$ N_2O vs. NH_3 , H_2 , CO, HCs + nitrates \rightarrow N_2O

Inert

200, 300, 400 °C

Reduction of Nitrates (not OSC) Leads to N₂O

Spatiotemporal Distribution of Stored NO,

200 bypass (mqq) 300 °(N₂O (pp 400 °C Short cycle

Time (min)

Transient response experiment : NH₃ pulse input

LNT pre-oxidized with O₂ followed by inert purge

Time (min)

NF

YOUTH AND SPORTS

OF EDUCATIO

200 °C

400 °

Inert

Transient response experiment: NH₃ pulse input

LNT pre-nitrated with NO_x + O₂ followed by inert purge

N₂O (pp

,300 °C

Extended Kinetic Model Predicts N₂O Behavior over a Range of Conditions

200 °C

Conclusions

- Main source of N₂O is reduction of nitrates and not reduction of OSC with NH₃
- Local N-selectivity depends on PGM redox state: partially reduced sites \rightarrow N₂O, N₂ vs. fully reduced sites \rightarrow NH₃, N₂
- Local N-selectivity depends on amount and stability of stored NO_x: more stable nitrates \rightarrow lower N₂O due to more NO_x being reduced on fully reduced PGM • Axial redistribution of stored NO_x during regeneration contributes to the global N₂O selectivity
- Less effective reductants in rich mixture reach unregenerated region first (HCs > CO > NH₃ > H₂) \rightarrow increased N₂O formation

Acknowledgements

- U.S. Department of Energy, Vehicle Technologies Program, Program Managers: Gurpreet Singh and Ken Howden
- Czech Ministry of Education, Youth and Sports, KONTAKT II Project LH 12086
- Umicore (Dr. Owen Bailey) provided the LNT catalyst

