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Goal is to obtain a thorough understanding 
of real LNT’s response to sulfur 

• Types, spatial distribution & stability of sulfur
• Impact on spatiotemporal distribution of reactions

– NO oxidation
– NO storage/reduction (NSR)
– Oxygen storage capacity (OSC)
– Reductant

 

conversion & utilization
• Impact on global performance

– Total NOx

 

capacity
– NOx

 

conversion
– NH3

 

selectivity

Information relevant to modeling & developing LNTs
with enhanced durability, reduced cost & fuel penalty

Desulfation profile of a real LNT

Integrated outlet measurement indicates 
multiplicity of S species



3 Managed by UT-Battelle
for the U.S. Department of Energy

Last year we studied how S affects spatial 
reaction distribution & global LNT perform.
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Global performance vs. SSpatial reaction distribution vs. S

• Sulfation

 

of NOx

 

storage sites is plug-like vs. that of OSC sites less efficient (more dispersed)
• Plug-like deactivation of NOx

 

storage sites displaces “active”

 

NSR zone downstream
– NOx

 

conversion decreases when remaining unsulfated

 

LNT length < NSR zone length
• NSR-zone displacement shortens downstream OSC-only zone 

– Oxidation of upstream NSR-zone-formed NH3 decreases: NH3

 

selectivity increases 
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Conceptual model of spatial development of 
different sulfates was proposed consistent w/ 
performance trend

• Various washcoat

 

components form sulfates
– BaO, MgAl2 O4 , CeO2 -ZrO2, Al2 O3

• NOx

 

storage sites showed highest affinity for sulfur
– Plug-like sulfation; hard to desulfate

• More analyses necessary to discriminate different sulfur types

NSR sites

OSC & other oxides

Increasing S loading

NSR sites

OSC & other oxides

Increasing S loadingIncreasing S loading
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•
 

Various tools employed

•
 

Refined understanding of LNT washcoat
 

structure, composition & 
S distribution 

•
 

Impact of stepwise desulfation
 

on LNT performance 

Bench reactor
• Monolith core
• Performance evaluation
• Stepwise desulfation (TPR)

Micro reactor
• Powder
• CLEERS LNT + “components”
• Sulfation & desulfation (TPR)

Characterization
• Monolith core
• Microscopy/EPMA

This year we enhanced conceptual model by 
characterizing & assessing stepwise DeS
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Characterization continues revealing 
complex structure of CLEER LNT 

CLEERS reference LNT: Umicore

 

GDI acquired in 2004

625 cpsi

 

cordierite substrate

WashcoatWhole brick

Complex mixture of components

• Washcoat
 

is composed of various compositionally distinct domains 
– Pt, Pd, BaO, CeO2

 

-ZrO2
BaO > CeO2 -ZrO2 & BaO < CeO2 -ZrO2
imply existence of different Ba morphologies (e.g. surface vs. bulk)

– Pt, CeO2

 

, MgAl2

 

O4
– Rh, Al2

 

O3

have been analyzed with:
BET, H2

 

chemisorption, elemental analyzers, EPMA, EDS, TEM, XRD, XPS, Raman, DRIFTS
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TPR DeS

 

profiles of bench sulfated non-Ba

 

components

Desulfation of LNT “components” performed 
to help interpret CLEERS LNT DeS (1/2)

• All studied non-Ba

 

components store sulfur w/ varying affinity to S
– CeO2

 

-ZrO2

 

& Al2

 

O3

 

support form mainly low-T sulfates
– Al2

 

O3

 

can also form medium-T sulfates
– MgAl2

 

O4

 

leads to mainly high-T sulfates, but Pt incorporation (via impregnation or physical mixture) 
decreases high T-sulfates & increases significantly low-

 

& medium-T sulfates

MgAl2 O4

Pt/MgAl2 O4

MgAl2 O4 + Pt/Al2 O3

Pt/CeO2 -ZrO2
(* 0.5)

Pt/Al2 O3
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Desulfation of LNT “components” performed 
to help interpret CLEERS LNT DeS (2/2)

•

 

Ba

 

forms mainly high T sulfates; impregnating it on Al2

 

O3

 

leads to sulfates more stable 
than those on CeO2

 

-ZrO2
• DeS

 

of Pt/Ba/Ce-Zr+MgAl2

 

O4

 

gives a S profile similar to CLEERS LNT
– CLEERS LNT’s

 

DeS

 

window is wider at high T end (due to presence of bulk Ba

 

phases?)

TPR DeS

 

profiles of bench sulfated Ba

 

components

Pt/Ba/Al2 O3

Pt/Ba/CeO2 -ZrO2
(PBCZ)

PBCZ
+

MgAl2 O4

CLEER LNT
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• Results consistent w/ performance data presented last year
– NOx

 

storage poisoning (Ba) is plug-like
– Oxygen storage poisoning (Ce-Zr) is much less plug-like

Inlet
(1st ¼)

Outlet

TPR DeS

 

of bench-sulfated CLEERS LNT sections

• Low T features contained in 1st

 

half
– Ce-Zr, Al, Mg-Al

•

 

High T features throughout & their axial 
progression more plug-like

– Ba, Mg-Al

Estimated types & spatial distribution of S are 
consistent with performance trends
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Experimental sequence
• Before sulfation (after previous DeS)

Performance evaluation
• Sulfation (3.4 g S/L cat.): 400 °C

Performance evaluation
• 1st

 

step of DeS: 400 to 492

 

°C, 1h soak
Performance evaluation

• 2nd

 

step of DeS: 400 to 525

 

°C, 1h soak
Performance evaluation

• 3rd

 

step of DeS: 400 to 564

 

°C, 1h soak
Performance evaluation

• 4th

 

(final) step of DeS: 400 to 690

 

°C, 1h soak
Performance evaluation

Stepwise desulfation was performed to 
evaluate impact of different sulfur species

•

 

Peak deconvolution

 

suggests multiple 
components forming sulfates

•

 

4 intermediate T’s chosen for partial   
desulfation & evaluation

492 °C

525 °C

564 °C
690 °C492 °C

525 °C

564 °C
690 °C

Typical “non-destructive”

 

DeS

 

profile
of CLEERS LNT

(TPR in 1% H2

 

, 5% H2

 

O, 5% CO2

 

)
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• Total S removal
from desulfation profiles

• Total NOx

 

storage recovery
from long cycling at 400 °C (15-min lean/10-min rich)

• NOx

 

conversion & NH3

 

selectivity
from short cycling at 400 °C (60-s lean/5-s rich)

After each DeS step, different functions 
of CLEERS LNT were evaluated

Gas Composition

NO O2 H2 H2

 

O CO2 N2

Lean
(storage)

300 ppm 10% 0% 5% 5% Bal

Rich
(regeneration)

0 ppm 0% 3.4% 5% 5% Bal

NSR cycling gas composition

Evaluated properties
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Each step removes least stable S available

• Sulfur profiles do not match those of peak deconvolution
– e.g. a lot larger 1st

 

S peak
– Indicates actual situation could be more complex than 4 sulfate-type scenario

• No sulfur evolution below maximum T of previous DeS

 

step
– Indicates there is no S redistribution from high T to low T sulfates

46% S

16%

28%

10%

S profiles from stepwise DeS
492 °C

525 °C 564 °C

690 °C Deconvolution of
S profile from a full DeS

492 °C

525 °C

564 °C
690 °C492 °C

525 °C

564 °C
690 °C

Deconvolution of
S profile from a full DeS

492 °C

525 °C

564 °C
690 °C492 °C

525 °C

564 °C
690 °C
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Total S removal & total NOx

 

storage recovery
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• Sulfation decreases total NOx

 

storage & NOx

 

conversion but increases NH3 selectivity
• Stepwise desulfation reverses this trend but each step has distinct impact revealing roles of S:

– 46% S recovered from 1st

 

step: little impact w/ slight degradation of short cycling performance
indicates association with components with insignificant NOx storage capacity
suggests low-T S from upstream can form higher-T S downstream (caution w/ incomplete DeS)

– 26% S from 2nd+3rd

 

steps: major impact on short cycling (NOx

 

conv. & NH3

 

sel.)
indicates association with NOx storage components of practical relevance

– 28% S from 4th

 

step w/ major impact on long cycling (total NOx

 

capacity)
indicates association with NOx storage components of little importance to short cycling

Roles of different S types were deduced from 
recovery trend of LNT
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Pictorial representation of impact of stepwise 
DeS on S distribution & LNT performance

Medium & high-T sulfates: Ba, Mg-Al

Sulfated state After 1st step DeS After 2nd+3rd step DeS After 4th step DeS

Low-T sulfates: Ce-Zr, Al, Mg-Al

• Almost full low-T S removal
• OSC & support functions recovered

• Some upstream released low-T S 
forms more stable sulfates

• Slight degradation of short cycling
e.g. conv. decreases; NH3 increases

• Practically relevant NOx 
storage sites desulfated

• Short cycling performance 
almost fully recovered

• Most stable S removed
• Recovery of NOx storage 

sites not relevant to short 
cycling
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Summary

• CLEERS LNT & model washcoat
 

components have been 
characterized & evaluated in fresh, sulfated & desulfated

 
states

– Demonstrated complex WC structure: PtPd/Ba/Ce-Zr, Pt/Ce/Mg-Al, Rh/Al…
– Clarified types, spatial distribution & stability of S species

• Sulfation
 

& stepwise desulfation
 

impact on LNT performance was 
rationalized based on spatial distribution of S & LNT functions
– Plug-like S of NOx

 

storage sites displaces NSR zone downstream: conv↓, NH3

 

↑
– Ce-Zr, Mg-Al & bulk Ba

 

stores S delaying poisoning of relevant storage sites
– Stepwise DeS

 

reverses this trend but incomplete DeS

 

could increase sulfation

 
of relevant sites

• Future work
– Experimentally confirm impact of stepwise DeS

 

on spatial reaction distribution 
– Characterize CLEERS reference & LNT components after S & stepwise DeS
– Contribute relevant info to modeling effort (see talk later by Larson, SNL)
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