Correlation between LNT NH₃ and N₂O selectivities under fast cycling conditions

Jae-Soon Choi, Josh Pihl, Miyoung Kim, Bill Partridge, Stuart Daw

Oak Ridge National Laboratory

Petr Kočí

Institute of Chemical Technology, Prague

2011 CLEERS Workshop April 21, 2011 Dearborn, MI

LNT can emit large amount of NH₃ & N₂O

- NH₃ & N₂O yields as high as 70 & 20%, respectively
- Highly dependent on reductant type & temperature
- Processes leading to these trends need to be understood
 - To control emissions & mitigate environmental and health impacts
 - To develop predictive models

2 Managed by UT-Battelle for the U.S. Department of Energy

Transient chemistry details necessary to accurately describe performance trends

Example: bench reactor experiments at ORNL CLEERS reference LNT; 60/5-s lean/rich cycling; H₂ reductant

for the U.S. Department of Energy

Objective: clarify N₂O chemistry by probing NH₃ transformation

Transient surface

Presentation_name

Catalyst studied: CLEERS reference LNT

Lean GDI LNT (Umicore), 625 cpsi

• Large oxygen storage capacity (OSC: Ce/Zr mixed oxides)

Three types of experimental conditions

1. Lean/rich cycling

- 1. Lean (60 s): 300 ppm NO, 10% O₂
- 2. Rich (5 s): 3.4% reductant

2. Transient response

- 1. 300 ppm NH_3 (or 300 ppm $NH_3 + 0.5\% H_2$) pulse input
- 2. Initial LNT surface: reduced, oxidized or nitrated

3. Steady flow

- 1. 500 ppm NO + 0.5% H_2
- All experiments presented here conducted with
 - Base gas: 5% H_2O , 5% CO_2 , N_2 balance
 - SV: 30K h⁻¹

Time

NH₃ decomposition (2NH₃ = N₂ + 3H₂) is significant under transient conditions

Transient response experiment: NH₃ **pulse input** LNT pre-reduced with H₂ followed by inert (N₂) purge

- Very high initial rates: zero NH₃ slip at all temperatures
- Lower steady-state rates
- Steep leading edges of NH₃ breakthrough profiles indicate adsorption/storage
 - Not explained by NH₃ storage: minor role (small NH₃ desorption)

7 Managed by UT-Battelle for the U.S. Department of Hand Sorption or spillover Prese

Decomposition is inhibited by hydrogen

- Co-feeding H₂ suppresses both initial & steady-state NH₃ decomposition
 - Hydrogen inhibits NH₃ decomposition over precious metal
 - When "H-adsorption or storage capacity" is saturated

8 Managed by UT-Battelle for the U.S. Department of Energy

Presentation_name

NH₃ reduction of surface oxygen does not lead to N₂O formation

Transient response experiment : NH₃ **pulse input** LNT pre-oxidized with O₂ followed by inert purge

- NH₃ reduction of stored oxygen (CeO₂): very efficient (plug-like front)
- Extent of surface reduction highly dependent on temperature
- NH₃ reduction of CeO₂ not a major contributor to N₂O

9 Managed by UT-Battelle for the U.S. Department of Energy

Presentation_name

NH₃ decomposition & OSC reduction explain lower apparent yields at higher temperature

Pihl et al., SAE Technical Paper 2006-01-3441

- Steady rich flow experiments show higher NH₃ generation at higher T
- Another potential factor to consider:
 - Lower H_2/NO ratio (unfavorable for NH_3 formation) due to faster NO_x release

N_2O formation mainly due to NH_3 reaction with stored $NO_{\rm x}$

- NH₃ is efficient in reducing stored NO_x also
- Major contributor to N₂O

Gas-phase O_2 reaction with NH_3 at rich/lean transition can lead to additional N_2O

Transient response experiment: 200 °C, NH₃ pulse input with 0.5% H₂ LNT pre-oxidized with 0.5% O₂ followed by inert purge

12 Managed by UT-Battelle for the U.S. Department of Energy

Presentation_name

Time (min)

Light-off temperature is highly dependent on reductant type: H₂ < CO < C₃H₆ < C₃H₈

Conclusions

- NH₃ can be involved in various surface reactions
 - Decomposition & H-spillover (rich)
 - Adsorption (rich) & slow release (rich, subsequent lean)
 - Reduction of stored NO_x (rich), stored O (rich), gas-phase O₂ (rich/lean; lean)
- N₂O is formed as a result of NH₃ conversion
 - NH₃ reaction with stored NO_x (rich): major contributor
 - NH₃ reaction with stored oxygen (rich): negligible contribution
 - NH₃ oxidation with gas-phase O₂ (rich/lean, lean): minor contribution
- NH₃ & N₂O highest near light-off T for a given reductant type
 - Formation of NH_3 (reductant + stored NO_x) & N_2O (NH_3 + stored NO_x) maximized
 - NH₃+CeO₂ & decomposition minimized
- Findings can enhance model NH₃, N₂O capabilities
 - See following talk by Partridge/Kočí

Acknowledgments

- Research sponsored by DOE, Vehicle Technologies Program
 - Program Managers: Ken Howden, Gurpreet Singh

- Catalyst from Umicore
 - Owen Bailey

Jae-Soon Choi 865-946-1368 choijs@ornl.gov

