Ammonia & Oxidation State Sensing Based on Catalyst-Tipped Optical Fibers

R. Maggie Connatser, William P. Partridge, Jr., Josh A. Pihl, and James E. Parks, II Fuels, Engines, and Emissions Research Center Energy & Transportation Science Division Oak Ridge National Laboratory

> Presenter: Maggie Connatser <u>connatserrm@ornl.gov</u>

Cross-Cut Lean Exhaust Emissions Reduction Simulations 2013 DOE Crosscut Workshop on Lean Emissions Reduction Simulation April 10th - 12th, 2013 University of Michigan - Dearborn

> U.S. DOE Program Management Team: Ken Howden, Gurpreet Singh, Steve Goguen

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

- I. Motivation & Approach
- II. Ammonia Sensing with CuZSM5
- **III.** Copper Zeolite Luminescence
- **IV.** Summary & Next Steps
- V. Acknowledgements

- I. Motivation & Approach
- II. Ammonia Sensing with CuZSM5
- **III.** Copper Zeolite Luminescence
- **IV. Summary & Next Steps**
- V. Acknowledgements

NH₃ & Cu State Impact SCR Catalyst Performance

Global Reactions

 $4NO + 4NH_3 + O_2 \rightarrow 4N_2 + 6H_2O$ $2NO_2 + 4NH_3 + O_2 \rightarrow 3N_2 + 6H_2O$ $NO + NO_2 + 2NH_3 \rightarrow 2N_2 + 3H_2O$

- Storage, utilization of NH₃ is critical to development, controls
- Ribeiro, et al, 2012: EXAFS, operando XANES identifies differences in Cu oxidation state ratios for Fast & Slow vs. Standard SCR

Standard SCR $NO_2 SCR$ Fast SCR

I.-S. McEwen et al. / Catalysis Today 184 (2012) 129–144

Using Light to Detect NH₃ & Cu State

• Cu state changes yield visible response

In-Situ Picture					
Temp	450°C	450°C	450°C	450°C	35°C
Gas	Air	Hydrogen	Air	Ammonia	Air
Color	Gray	Pink	Gray	Pink	Blue

* Gas conditions defined as " H_2 ": 40% H_2 , balance inert; " NH_3 ": 1000ppm NH_3 , balance inert.

Hydrogen & ammonia effect common changes to optical absorbance in CuZSM5. Similar results are also seen in CuCHA.

Using Light to Detect NH₃ & Cu State

- Cu state changes yield visible response
- Unique optical accessibility of Cu redox couple
 - Route to ammonia, other redox-active species assessment
 - Simplified approach to monitor redox state of Cu centers

Not luminescent Cu⁺² + e⁻ <> Cu

Intra-Catalyst Optical Sensing of Gases and Cu State

Motivation: Enhance catalyst state monitoring, modeling, design & control

- Map intra-catalyst spatial NH₃ distributions
- Understand oxidation state, rxn network distribution & nature
- Assess ageing, operation at low temp
- Inspired by self-diagnosing "smart catalysts"

Exhaust gases interact with catalyst material on monolith **and** tip of fiber

Catalyst material-tipped fiber fits easily into channels of monolith

Minimally Invasive Fiber Probe Fabrication

- Fused silica optical fiber commercially available
- Sol gel tip: porous matrix holds catalyst material
- Tuning the measurement for speed & sensitivity:
 - Zeolite identity
 - Sol gel precursor molecule/delivery solvent/sol gel viscosity
 - Catalyst powder loading level
 - Thickness of tip coating

Sensor Material-Tipped Optical Fiber

Appl. Optics, 38(25), 5306-5309; **1999**.

Sensitive Detection Allows Catalyst Monitoring

- Single-entry, micron-footprint probes
 - Common excitation, collection path
 - Optimized collection of signal
- Laser-induced fluorescence
 - High signal to background ratio
 - Holographic filters minimize laser background
- Lock-in amplifier signal detection
 - Apply frequency signature to input light;
 detect outputs with same frequency
 - Phase-locking significantly increases S/N

- I. Premise of Work
- **II.** Ammonia Sensing with CuZSM5
- **III. Copper Zeolite Luminescence**
- **IV. Summary & Next Steps**
- V. Acknowledgements

Ammonia Sensing with Cu Zeolite – Tipped Fiber

- Previous work: SPACI-IR, SPACI-MS
 - Gas phase NH_3 concentration indicates NH_3 storage
 - Stoichiometry of NH₃ gives reaction rate
 - Infer control strategies from these spatiotemporal measurements
- Optical methods allow complementary spatiotemporal info
- NH₃ slip control for general exhaust applications

SpaciMS : Spatially Resolved Capillary Inlet MS

Quantifies transient species distributions within operating chemical reactors via direct capillary sampling to a mass spectrometer

NH₃ Sensing at Diesel-Exhaust [O₂] & Temps

- Comparison indicates favorable performance of inorganic.
- Cu⁺ luminescence quenching by O_2 is not an issue at diesel-SCR [O₂].
- - Auto-reduction
 - Boltzman distribution
- Thermal Reference fiber ٠
 - ✓ Passivated catalyst

Ultimately, Cu oxidation state is detected variable

- I. Premise of Work
- II. Ammonia Sensing with CuZSM5
- **III.** Copper Zeolite Luminescence
- **IV. Summary & Next Steps**
- V. Acknowledgements

Method can measure both Cu⁺ and certain Cu²⁺ species

14 Managed by UT-Battelle for the Department of Energy

Differentiating Luminescence from Cu⁺ and Cu²⁺

Strategies for Discerning Luminescent Centers

- Excitation wavelength multiplexing
- Luminescence lifetimes

Approaches Being Pursued

- Concurrent UV and visible excitation with diverse frequency signatures
- Generate calibration datasets in materials, gaseous environments matched to XANES literature data for comparison

Summary & Next Steps:

Developing diagnostics to address the next barriers to *efficiency improvements*

- Improved diagnostics allow broader development applications
 - Single-port, minimally invasive, probe
 - Spatial, temporal resolution in real-time, intra-monolith or on-engine
- Engine exhaust application in SCR catalysts
 - SCR control: oxidation state, coordination of copper
 - NH₃ utilization & slip
 - Urea decomposition & distribution
 - Monitor for catalyst poisons (P, S species)
- Future work: NH₃ Sensing
 - Improve speed & sensitivity by tuning fabrication; expand catalyst materials used
 - Develop thermal reference fiber
 - Apply in complex exhaust gases & compare to SPACI intra-cat measurements
- Future work: Cu Oxidation State Assessment
 - Concurrent UV and visible excitation with diverse frequency signatures
 - Generate calibration datasets in materials, gaseous environments matched to XANES literature data for comparison

Department of Energy

- Energy Efficiency and Renewable Energy
- Gurpreet Singh, Ken Howden, and Kevin Stork, Program Managers

• Cummins

- Catalyst CRADA Partner, Neil Currier (PI) & Alex Yezerets
- Combustion CRADA Partner, Sam Geckler (Co-PI)

• Fuels, Engines, and Emissions Research Group, ORNL

- William P. Partridge, Jr., Ph.D., Distinguished Scientist
- James E. Parks, II, Ph.D., Group Leader, Emissions & Catalyst Research
- Josh A. Pihl, Todd Toops, Ji-Hyung Yoo, Rodrigo Sanchez-Gonzalez of FEERC
- Maria Pia Ruggieri, Politechnico Di Milano

