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LNT-SCR Concept: Utilization of In Situ NH,

e “Classical” explanation:13

— LNT produces NH; during rich purges (similar to TWC
under rich engine conditions)

— NH; stores on downstream SCR catalyst

— Stored NHj; reacts with “breakthrough” NOx during lean
operation

— Similar to urea-SCR except that NH; is generated “in-situ”
or “passively” by the LNT

e NH; in situ mechanism does not appear to fully explain
LNT+SCR vehicle data*
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Reactor Studies

LNT-SCR studies:

e BASF catalysts:
Low PGM-loaded LNT +
Cu-chabazite SCR catalyst

e 3” x 0.9” cores, de-greened at 500 2C
for 5 h under L/R cycling

e Separate catalysts/reactors with gas
sampling at three positions

* 60 s lean/5 s rich cycles

e Gas analysis using FTIR gas analyzer




NOx and NH; Conversion in LNT-SCR System:
Effect of Added Propene (Rich Phase)

60 s lean — 5 s rich cycles:
Rich condition #1: 1% CO, 0.3% H,, 3333 ppm C;H,
Rich condition #2: 1% CO, 0.3% H
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Benefit of SCR catalyst most apparent when hydrocarbon (propene) is present

—> SCR catalyst is able to utilize propene - or a derivative thereof - as a reductant
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NOx Conversion in the LNT-SCR System:
Results for Different Reductants (233 °C)

Reductant 2 Total NOx

conversion over

NOXx conversion over
SCR catalyst during
lean phase (%)

NOx conversion
over SCR catalyst
during rich phase

(%)

SCR catalyst (%)

CO +H, + CH, 15.3 5.9 9.6
CO + H, 3.6 3.45 0.15
C,H, 8.0 0.8 7.2

aCO =1%; H, = 0.3%; C3Hg = 3333 ppm;

CO+H,+C;H, as reductant,
lean-rich cycling:

._ : When propene is added as

NOx Concentration (ppm)

LNT only

I3

'?",gLNT+SCR
4.0 T:lnfe i 5.0 55 6.0

rich phase reductant, NOx
conversion over SCR catalyst
mainly occurs in rich phase
(as opposed to lean phase for
conventional NH; route)



Nitrogen Balance Across SCR Catalyst
Reductant = 1% CO + 0.3% H, + 3333 ppm C;H,

NH; converted NOx converted | NH; converted —

LNT Inlet over SCR catalyst | over SCR catalyst | NOx converted
Temperature
149 0.1 9.3 -9.1
166 0.3 6.7 -6.3
183 0.9 23.9 -23.0
196 1.9 21.5 -19.6
232 8.7 52.6 -43.9
275 11.9 42.4 -30.5
316 14.6 26.8 -12.2
375 15.9 27.7 -11.8

421 11.4 34.7 -23.3



Steady State NOx Conversion over Cu-zeolite SCR
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* Propylene and ethylene show moderate activity for NOx reduction over SCR catalyst

under steady-state and cycling conditions

* NOx conversion is sensitive to O, content of feed



Spatiotemporal Analysis of NOx Reduction by NH; & C;H,
over Cu-chabazite During Lean/Rich Cycling

*Bench-reactor experimental conditions

NH, C3H; NH; + C3Hq
Lean (60s) Rich(5s) Lean(60s) Rich(5s) Lean(60s) Rich(55s)
NO (ppm) 300 300 300 300 300 300
0, (%) 8 1 8 1 8 1
CsHg (ppm) O 0 0 3333 0 3333
NH; (ppm) 0 300 0 0 0 300
CO, (%) 5 5 5 5 5 5
H,O (%) 5 5 5 5 5 5
N, (%) Balance Balance  Balance Balance  Balance Balance

— Total flow: 13.7 L/min (equivalent to 30K SV for 3-in core: 1L)
— Temperature: 200, 250, 300, 350, 400, 450 °C

*Spatiotemporal resolution of reactions
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NOx Reduction by NH,

Reductant: 300 ppm NH,
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* NOx reduction occurs both in rich & lean phases

e Greater portion of NOx reduction in lean phase at lower temperatures

— Due to lower reduction rate & higher NH; storage



Significant NOx Reduction by C;H, Above 250 °C

Reductant: 3333 ppm C;H,
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* NOx reduction occurs both in rich & lean phases (3 “regimes” at 350, 400, 450 °C)
* Greater portion of NOx reduction in lean phase at lower temperatures

— Due to lower reduction rate & higher C;H, storage (see peak tails)



NH; Could be Surface Intermediate

Temperature ramp (200 - 500 °C) after C;H, cycling at 450 °C - 200 °C;
catalyst was purged with O,, H,0 and CO, at 200 °C before the TPD
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* High-T release of NH; suggests its formation, storage & usage on surface only

— Could explain “3™” NOx reduction regime (peak in lean phase) observed during C;H,
cycling at 350, 400, 450 °C



Effects of NH; & C;H, on NOx Reduction are Additive
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Adsorption of C;H, on Cu-chabazite SCR Catalyst
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» Breakthrough time decreases with increasing adsorption temperature



Heat of Adsorption of C;H, on Cu-chabazite
SCR Catalyst

N.A. Al-Baghli, K.F. Loughlin, J. Chem.
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» Heat of adsorption of C;H, obtained using Langmuir isotherm and Arrhenius egns.

» Magnitude of heat of adsorption consistent with chemi- and physisorption;
chemisorption is indicated to be strong (e.g., comparable with Li-exchanged

zeolite 13X)



TPD of C;H, Adsorbed on Cu-chabazite SCR Catalyst
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» After propene adsorption 72 °C, the TPD curve shows four peaks with a maximum
intensity at 156, 249, 329, and 541 °C

» Possible adsorption sites: Cu species (e.g., Cu?*, Cu*, CuO) and Brgnsted acid sites



Adsorption and Desorption of C;H,
on Cu-chabazite SCR Catalyst
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» Mismatch between amount of propene adsorbed and desorbed (particularly at
> 300 °C) indicates high reactivity of propene in zeolite

» Implication is that many different species are available to react with NOx



Concentration (ppm)

N,O Reduction Over Cu-chabazite SCR Catalyst

Comparison of gas composition behind LNT and SCR catalysts during lean-rich cycling
(1% C,H, as reductant, 360 s lean, 30 s rich; 375 °C)

Behind LNT catalyst Behind SCR catalyst
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» Significant conversion of NOx, NH;, C;H, and N,O over SCR catalyst
» As expected NOx and N,O breakthrough LNT catalyst before NH; and C;H,

C,H, Concentration (ppm)



N,O Reduction Over Cu-chabazite SCR Catalyst

N,O Concentration (ppm)
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Comparison of N,O concentrations behind
LNT & SCR catalysts (360 s lean, 30 s rich):

» Increased N,O formation over LNT when
using CO as reductant, compared to H,
(consistent with Abdulhamid et al. and
LePhuc etal.)

» For CO, N,O formation observed at L-R
and R-L transition (consistent with
Elizundia et al.)

» Some N,O conversion occurs
before reductant has broken through,
implying N,O decomposition

H. Abdulhamid, E. Fridell, M. Skoglundh, Top. Catal. 30/31 (2004)
161.
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N,O Reduction Over Cu-chabazite SCR Catalyst:
Steady-state Continuous Flow

Feed: 100 ppm N,O, 5% CO,, reductant as shown, bal. N,; GHSV = 30,000 h-!
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* H, best reductant, followed by NH,
* N,O reduction not inhibited by water; v. slight inhibition of decomposition reaction
 Slight promoting effect with water for reduction using CO or C;H,: implies in

situ formation of H, via WGS or steam reforming



Summary

Reactor studies have shown that a hydrocarbon-based NOx
reduction pathway (ethylene and propylene studied) can operate in
a Cu-chabazite SCR catalyst in parallel with the NH;-SCR pathway

The contribution of hydrocarbons to NOx reduction is most evident
under conditions of low NH, availability

Propene adsorbs strongly in the Cu-chabazite catalyst; significant
storage of HC in the SCR catalyst can occur, even at high
temperatures

Preliminary results indicate that adsorbed propene undergoes
oxidation, cracking and oligomerization reactions

Significant N,O reduction is observed over the SCR catalyst
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