Synergy of LNT and SCR Catalysts in Coupled LNT-SCR Systems

J. Wang, Y. Ji, D. Kim, M. Crocker,
Center for Applied Energy Research, University of Kentucky

M.-Y. Kim, J.-S. Choi
Fuels, Engines & Emissions Research Center, ORNL

M. Dearth, R.W. McCabe
Chemical Engineering Dept., Ford Motor Co.

C. Shi, Z. Zhang, L. Xu, A. Zhu,
Dalian University of Technology, Dalian, People’s Republic of China

CLEERS Workshop, April 12, 2013

E-mail: mark.crocker@uky.edu
Synergy of LNT and SCR Catalysts in Coupled LNT-SCR Systems

Overview:

- Coupled LNT-SCR systems: concept and development
- Role of HCs in NOx reduction over coupled LNT-SCR (Cu-CHA) system
- NOx reduction using HCs and NH\textsubscript{3} over Cu-CHA
- Mitigation of N\textsubscript{2}O and H\textsubscript{2}S emissions over Cu-CHA in LNT-SCR configuration
- Plasma-assisted LNT catalyst regeneration
- Summary
LNT-SCR Concept: Utilization of *In Situ* NH$_3$

- “Classical” explanation:
 - LNT produces NH$_3$ during rich purges (similar to TWC under rich engine conditions)
 - NH$_3$ stores on downstream SCR catalyst
 - Stored NH$_3$ reacts with “breakthrough” NOx during lean operation
 - Similar to urea-SCR except that NH$_3$ is generated “in-situ” or “passively” by the LNT

LNT-SCR Concept: History

• First U.S. patent to DaimlerChrysler in 2001 (US 6,176,079)

• Other U.S. patents to SwRI, Ford, Eaton, DaimlerChrysler, GM, BASF, Umicore, Johnson-Matthey

• First open literature publications:
 2006, Eaton Corp., use of LNT-SCR system for HDD applications
 2006-2007, Ford, use of LNT-SCR for LDD applications

• First application: Daimler, BlueTEC Mercedes E320 (introduced in October 2006 in U.S.)

• 2nd generation LNT-SCR system reported by Ford in 2009
 (Fe-zeolite SCR catalyst replaced by Cu-CHA)

• LNT-SCR system models published:
 2009-2010: Daimler group
 2010: Kočí et al.
 2012: Balakotaiah et al.
LNT-SCR Concept: Applications

BlueTEC Mercedes E320 (MY 2007 in U.S.) and E300 (MY2008 in Europe)
V6 CDI engine

- Aimed at Tier II Bin 8, corresponding to ca. 50% NOx conversion requirement
- DOC-LNT-CDPF-SCR exhaust catalyst configuration
- Function of SCR catalyst appears to have been mainly for avoidance of NH₃ slip
- Used in MY2007-2009
- Superceded by BlueTEC II urea-SCR system (Tier II, Bin 5)

2nd Generation LNT + SCR

• Key points:
 – enabled by advances to both LNT catalyst technology and SCR catalyst technology
 – NH$_3$ *in situ* mechanism does not fully explain LNT+SCR vehicle data: HC-SCR in Cu-CHA catalyst also contributes to NOx reduction
 – Cu-CHA also plays active role in mitigation of N$_2$O and H$_2$S emissions
 – excellent NOx reduction activity of Cu-CHA catalyst (and stability w.r.t. aging) enables decrease in LNT PGM loadings

Vehicle Testing: Steady-Speed (Ford data: R. McCabe and M. Dearth)

NOx & NH₃ concentration during a steady state
(55mph, catalyst temperature at 380°C (lean) and 430°C (rich))

NH₃ produced cannot explain extra NOx conversion by SCR catalyst
Reactor Studies

LNT-SCR studies:

- **BASF catalysts:**
 - Low PGM-loaded LNT + Cu-chabazite SCR catalyst
- **3” x 0.9” cores, de-greened at 500 °C for 5 h under L/R cycling**
- **Separate catalysts/reactors with gas sampling at three positions**
- **60 s lean/5 s rich cycles**
- **Gas analysis using FTIR gas analyzer**
NOx and NH₃ Conversion in LNT-SCR System: Effect of Added Propene (Rich Phase)

60 s lean – 5 s rich cycles:
Rich condition #1: 1% CO, 0.3% H₂, 3333 ppm C₃H₆
Rich condition #2: 1% CO, 0.3% H₂

Benefit of SCR catalyst most apparent when hydrocarbon (propene) is present
→ SCR catalyst is able to utilize propene - or a derivative thereof - as a reductant

Nitrogen Balance Across SCR Catalyst
Reductant = 1% CO + 0.3% H₂ + 3333 ppm C₃H₆

<table>
<thead>
<tr>
<th>LNT Inlet Temperature (°C)</th>
<th>NH₃ converted over SCR catalyst (ppm)</th>
<th>NOx converted over SCR catalyst (ppm)</th>
<th>NH₃ converted – NOx converted (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>149</td>
<td>0.1</td>
<td>9.3</td>
<td>-9.1</td>
</tr>
<tr>
<td>166</td>
<td>0.3</td>
<td>6.7</td>
<td>-6.3</td>
</tr>
<tr>
<td>183</td>
<td>0.9</td>
<td>23.9</td>
<td>-23.0</td>
</tr>
<tr>
<td>196</td>
<td>1.9</td>
<td>21.5</td>
<td>-19.6</td>
</tr>
<tr>
<td>232</td>
<td>8.7</td>
<td>52.6</td>
<td>-43.9</td>
</tr>
<tr>
<td>275</td>
<td>11.9</td>
<td>42.4</td>
<td>-30.5</td>
</tr>
<tr>
<td>316</td>
<td>14.6</td>
<td>26.8</td>
<td>-12.2</td>
</tr>
<tr>
<td>375</td>
<td>15.9</td>
<td>27.7</td>
<td>-11.8</td>
</tr>
<tr>
<td>421</td>
<td>11.4</td>
<td>34.7</td>
<td>-23.3</td>
</tr>
</tbody>
</table>
Speciation Study of LNT Exhaust Gas

- FT-IR applied to study formation of potential NOx reductants over LNT (other than NH₃); only HCN is consistently observed in gas phase, but in low concentrations.
- GC-MS also failed to detect significant gas phase organo-N species.
- Hence, formation of organo-nitrogen species over LNT does not appear to be important for SCR.

- Slipped hydrocarbon is responsible for NOx reduction in SCR catalyst.

Measured HCN downstream of LNT during lean/rich cycling (for 3 different reductant mixtures).
Lean/Rich Cycling over SCR Catalyst

60 s lean / 10 s rich

T = 435°C

Propylene

- NOx Conversion (%)
- Lambda
- T = 435°C
- NOx
- Lambda

Ethylene

- NOx Conversion (%)
- Lambda
- T = 435°C
- NOx
- Lambda

Concentration (ppm)

- Propylene
- CO
- Ethylene
- Formaldehyde
- Acetaldehyde
- Propane
- MeOH
- n-octane
- Toluene

Lean/Rich Cycling over SCR Catalyst

60 s lean / 10 s rich

T = 435°C

- NOx Conversion (%)
- Lambda
- T = 435°C
- NOx
- Lambda

Concentration (ppm)

- Propylene
- CO
- Ethylene
- Formaldehyde
- Acetaldehyde
- Propane
- MeOH
- n-octane
- Toluene

Lean/Rich Cycling over SCR Catalyst

60 s lean / 10 s rich

T = 435°C

- NOx Conversion (%)
- Lambda
- T = 435°C
- NOx
- Lambda

Concentration (ppm)

- Propylene
- CO
- Ethylene
- Formaldehyde
- Acetaldehyde
- Propane
- MeOH
- n-octane
- Toluene
NOx Conversion over Cu-zeolite SCR Catalyst During Lean-rich Cycling: C₃H₆ and C₂H₄ as Rich Phase Reductants

SCR catalyst only:
Lean (60 s): 300 ppm NO, 8% O₂, 5% CO₂, 5% H₂O, N₂ as balance; Rich (5 s): 300 ppm NO, 3333 ppm C₃H₆ or 5000 ppm C₂H₄, O₂ as indicated, 5% CO₂, 5% H₂O, N₂ as balance

- Cycle-averaged NOx conversion is higher than theoretical value if NOx is only reduced during rich phase => hydrocarbon storage + lean phase NOx reduction
- NOx conversion is sensitive to O₂ content of feed
Steady State NOx Conversion over Cu-zeolite SCR Catalyst

Conditions: 300 ppm NO, 5% CO₂, 5% H₂O, N₂ balance, GHSV = 30,000 h⁻¹

- Propylene and ethylene show moderate activity for NOx reduction over SCR catalyst under steady-state and cycling conditions
- NOx conversion is sensitive to O₂ content of feed
Breakthrough curves for C₃H₆ adsorption on Cu-CHA

Arrhenius plot of Henry’s constant values obtained from Langmuir isotherm model

- Maximum C₃H₆ loading (72 °C) = 3.6 wt%
- Magnitude of heats of adsorption consistent with chemi- and physisorption; chemisorption is indicated to be strong
- TPD experiments (Cu-CHA and Cu-leached samples): desorption peak at 250 °C due to propene adsorbed on Cu²⁺; desorption peaks at 150 °C and 330 °C due to propene adsorbed on (non-Cu) acidic sites in zeolite
- In addition to propene, many other desorbed species are observed: C₂H₂, C₂H₄, C₂H₆, C₄H₈, CO, CO₂, H₂O, etc.
Spatiotemporal Analysis of NOx Reduction by NH₃ & C₃H₆ over Cu-chabazite During Lean/Rich Cycling

- Bench-reactor experimental conditions

<table>
<thead>
<tr>
<th></th>
<th>NH₃ Lean (60 s)</th>
<th>NH₃ Rich (5 s)</th>
<th>C₃H₆ Lean (60 s)</th>
<th>C₃H₆ Rich (5 s)</th>
<th>NH₃ + C₃H₆ Lean (60 s)</th>
<th>NH₃ + C₃H₆ Rich (5 s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO (ppm)</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>O₂ (%)</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>C₃H₆ (ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3333</td>
<td>0</td>
<td>3333</td>
</tr>
<tr>
<td>NH₃ (ppm)</td>
<td>0</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>CO₂ (%)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>H₂O (%)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>N₂ (%)</td>
<td>Balance</td>
<td>Balance</td>
<td>Balance</td>
<td>Balace</td>
<td>Balance</td>
<td>Balance</td>
</tr>
</tbody>
</table>

- Total flow: 13.7 L/min (equivalent to 30K SV for 3-in core: 1L)
- Temperature: 200, 250, 300, 350, 400, 450 °C

- Spatiotemporal resolution of reactions
NOx Reduction by NH$_3$

- Total consumption of NH$_3$ with near stoichiometric NO$_x$ reduction within 1st ¼ catalyst at all temps.

- NOx reduction occurs both in rich & lean phases
- Greater portion of NOx reduction in lean phase at lower temperatures
 - Due to lower reduction rate & higher NH$_3$ storage
Significant NOx Reduction by C₃H₆ Above 250 °C

- Up to ~20% NOx conversion
- Best performance at 350 °C
- Entire length used except at 400-450 °C

- NOx reduction occurs both in rich & lean phases (3 “regimes” at 350, 400, 450 °C)
- Greater portion of NOx reduction in lean phase at 300 °C than at 450 °C
 - Due to lower reduction rate & higher C₃H₆ storage (see peak tails)
NH₃ Could be Surface Intermediate

Temperature ramp (200 → 500 °C) after C₃H₆ cycling at 450 °C → 200 °C; catalyst was purged with O₂, H₂O and CO₂ at 200 °C before the TPD

- High-T release of NH₃ suggests its formation, storage & usage on surface only
 - Could explain "3rd" NOx reduction regime (peak in lean phase) observed during C₃H₆ cycling at 350, 400, 450 °C

Purge at 200 °C until C₃H₆ close to zero
Effects of NH$_3$ & C$_3$H$_6$ on NOx Reduction are Additive

- Spatial profiles of NH$_3$ & C$_3$H$_6$ utilization virtually unaffected by co-feeding
Bench-reactor experimental conditions

<table>
<thead>
<tr>
<th></th>
<th>NH₃</th>
<th>C₃H₆</th>
<th>NH₃ + C₃H₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹⁵N¹⁸O (ppm)</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>O₂ (%)</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>C₃H₆ (ppm)</td>
<td>0</td>
<td>0</td>
<td>3333</td>
</tr>
<tr>
<td>NH₃ (ppm)</td>
<td>0</td>
<td>600</td>
<td>0</td>
</tr>
<tr>
<td>CO₂ (%)</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>H₂O (%)</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Ar (%)</td>
<td>Balance</td>
<td>Balance</td>
<td>Balance</td>
</tr>
</tbody>
</table>

- Total flow: 6.9 L/min
- Catalyst length: 0.75 in
- Temperature: 350 °C

Note: higher NO, NH₃ concentrations & lower flow rate used to facilitate MS analysis
15N18O Experiments Performed to Probe the Chemistry of NH$_3$ Intermediate (cont.)

- **Gas effluent analysis**
 - Mass spectrometer (EI, quadrupole)
 - Monitored mass-to-charge ratios (m/z):
 - Reductants: 24 (C$_2$H$_4$), 28 (CO, C$_2$H$_4$), 29 & 30 (aldehydes), 41 (C$_3$H$_6$)
 - O$_2$: 34 (18O16O)
 - NO: 31 (15N16O major component at outlet)
 - N$_2$: 29 (15N14N), 30 (15N$_2$)

- **Cross-sensitivity issues have been considered**

- 15N$_2$
- Rich phase
- m/z 29
- m/z 30
- m/z 29 & 30 can represent both nitrogen and aldehydes
- Aldehyde-attributable signals were subtracted

\[m/z \ 29 \text{ and } 30 \text{ can represent both nitrogen and aldehydes} \]

\[m/z \ 29 \text{ and } 30 \text{ can represent both nitrogen and aldehydes} \]
C\textsubscript{3}H\textsubscript{6} Contributes to NH\textsubscript{3} Formation but Inhibits NH\textsubscript{3}-NO Reaction

- 2 regimes of 15NO reduction during NH\textsubscript{3} cycling
 - Rich phase (I); early lean phase (II)
- 3 regimes of 15NO reduction during C\textsubscript{3}H\textsubscript{6} cycling
 - Rich phase (I); early lean phase (II); mid lean phase (III; starts when HC's are depleted)
- Regimes I & II of 15NO reduction during C\textsubscript{3}H\textsubscript{6} cycling lead exclusively to 15NH\textsubscript{3}
 - Third regime (III) utilizes stored 15NH\textsubscript{3} producing 15N\textsubscript{2}
- Adsorbed hydrocarbons slow kinetics of NH\textsubscript{3} utilization (i.e., 15N14N formation)
 - cf. unaffected NH\textsubscript{3} storage capacity & additive effect on cycle-averaged NO conversion
Mitigation of H₂S Emissions by Cu-CHA SCR Catalyst
Desulfation Comparison: LNT-only vs. LNT-SCR

Ford Laboratory Data

Cu-CHA SCR catalyst virtually eliminates H₂S emissions produced by LNT during rich high-temperature desulfation (H₂S from LNT converted to SO₂) – more detail in SAE 2009-01-0285 (L. Xu et al.)
N$_2$O Reduction Over Cu-CHA SCR Catalyst

Cycle-averaged N$_2$O conversion over SCR catalyst during 60 s lean/5 s rich cycling:

Lean: 300 ppm NO, 8% O$_2$, 5% CO$_2$, 5% H$_2$O, N$_2$ as balance;
Rich: 300 ppm NO, 1% H$_2$ or 1% CO or 3333 ppm C$_3$H$_6$ as reductant, 5% CO$_2$, 5% H$_2$O, N$_2$ as balance;
GHSV = 30,000 h$^{-1}$

- H$_2$ best reductant for N$_2$O
- No reductant breakthrough from LNT observed at ≥400 °C, hence N$_2$O conversion tails off (implies that N$_2$O decomposition must be occurring)
N$_2$O Reduction Over Cu-CHA SCR Catalyst

Comparison of gas composition behind LNT and SCR catalysts during lean-rich cycling (1% C$_3$H$_6$ as reductant, 360 s lean, 30 s rich; 375 °C)

- As expected NOx and N$_2$O breakthrough LNT catalyst before NH$_3$ and C$_3$H$_6$
- Significant conversion of NOx, NH$_3$, C$_3$H$_6$ and N$_2$O over SCR catalyst
Comparison of N₂O concentrations behind LNT & SCR catalysts (360 s lean, 30 s rich):

- Increased N₂O formation over LNT when using CO as reductant, compared to H₂ (consistent with Abdulhamid et al. and LePhuc et al.)
- For CO, N₂O formation observed at L-R and R-L transition (consistent with Elizundia et al.)
- Some N₂O conversion occurs before reductant has broken through, implying N₂O decomposition

N\textsubscript{2}O Reduction Over Cu-CHA SCR Catalyst: Steady-state Continuous Flow (1)

Feed: 100 ppm N\textsubscript{2}O, 5% CO\textsubscript{2}, reductant as shown, bal. N\textsubscript{2}; GHSV = 30,000 h-1

- H\textsubscript{2} best reductant, followed by NH\textsubscript{3}
- N\textsubscript{2}O reduction not inhibited by water; v. slight inhibition of decomposition reaction
- Slight promoting effect with water for reduction using CO or C\textsubscript{3}H\textsubscript{6}; implies in situ formation of H\textsubscript{2} via WGS or steam reforming
N₂O Reduction Over Cu-CHA SCR Catalyst: Steady-state Continuous Flow (2)

- N₂O decomposition is weakly promoted by NO, e.g.: N₂O + NO → N₂ + NO₂
- Effect appears to be catalytic, rather than stoichiometric (e.g., may facilitate migration of adsorbed O through NO₂ intermediates, enhancing the recombination of O atoms)*

LNT-SCR System Aging

Cycle-averaged NOx conversion for BASF LNT and LNT-SCR systems

Feed: lean (60 s): 500 ppm NO, 8% O2, 5% CO2, 5% H2O, balance N2; rich (5 s): 2.5% CO, 5% CO2, 5% H2O, balance N2. GHSV = 60,000 h⁻¹.

- After aging, deterioration in LNT NOx conversion is observed; based on analytical data, this can be attributed to accumulation of residual sulfate in washcoat and Pt-Ba phase segregation (→ decreased NOx storage capacity)
- After aging, NOx conversion over SCR catalyst is increased, due to increased LNT selectivity to NH3 and increased NOx slip available for reaction
- Hence, SCR catalyst helps to compensate for deterioration in LNT NOx conversion
The 150 °C Challenge: Non-thermal Plasma-Assisted NOx Storage-Reduction on Perovskite LNT Catalysts

• Limiting factors for LNT operation at low temperatures are ability to:
 (i) store NOx
 (ii) regenerate storage sites
 (iii) reduce released NOx

• Concept:
 - apply perovskites for (i)
 - apply non-thermal plasma for (ii) and (iii)*

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>NO\textsubscript{x} storage capacity (μmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 °C</td>
</tr>
<tr>
<td>Pt/30BaO/Al\textsubscript{2}O\textsubscript{3}</td>
<td>86.9</td>
</tr>
<tr>
<td>LaMn\textsubscript{0.9}Fe\textsubscript{0.1}O\textsubscript{3}</td>
<td>380.5</td>
</tr>
</tbody>
</table>

500 ppm NO, 8% O\textsubscript{2}, N\textsubscript{2} bal., 50 min, GHSV = 30,000 h-1

* Production of H\textsubscript{2}-rich gas for LNT regeneration using plasmatron fuel reformer:
Comparison of First Cycle and Cycle-averaged NOx Storage Capacities for Fully Formulated LNT Catalysts

- LNT performance severely limited at 150 °C by ability to regenerate NOx storage sites

Non-thermal Plasma-Assisted NOx Storage-Reduction: Experimental Details

H₂ or Ar non-thermal plasma applied in rich phase

Discharge power = 20 w

Effluent gases analyzed using MS

NOx Conversion Under Lean-Rich Cycling w/o NTP: $\text{LaMn}_{0.9}\text{Fe}_{0.1}\text{O}_3$

- Lean (10 min): 500 ppm NO, 8% O_2, bal. Ar
- Rich (2 min): 1% H_2, bal. Ar; GHSV = 10,000 h$^{-1}$
- Catalyst pre-treatment in 1% H_2 at 500 °C for 1 h

- Low rich phase NOx reduction activity of $\text{LaMn}_{0.9}\text{Fe}_{0.1}\text{O}_3$ responsible for poor NOx conversion under lean-rich cycling
NOx Conversion Under Lean-Rich Cycling with NTP: LaMn$_{0.9}$Fe$_{0.1}$O$_3$

N$_2$ and NOx profiles (T = 30 °C)
Solid line: H$_2$ plasma; dotted: Ar plasma

- 90% NOx conversion obtained at 30 °C for LaMn$_{0.9}$Fe$_{0.1}$O$_3$ under these conditions

Summary (1)

- Reactor studies have shown that a hydrocarbon-based NOx reduction pathway (ethylene and propylene studied) can operate on a Cu-chabazite SCR catalyst in parallel with the NH$_3$-SCR pathway.
- The contribution of hydrocarbons to NOx reduction is most evident under conditions of low NH$_3$ availability.
- NH$_3$ is formed as an intermediate in NOx reduction by propene on the SCR catalyst.
- The presence of propene slows the kinetics of (co-fed) NH$_3$ utilization by NOx on the SCR catalyst, but doesn’t affect cycle-averaged NH$_3$ utilization (60 s lean/5 s rich cycles) except at very high concentrations.
- Propene adsorbs strongly in the Cu-chabazite catalyst; at high temperatures, propene is converted to a variety of products (via oligomerization, cracking, oxidation, etc.).
Summary (2)

• The synergy of coupled LNT-SCR systems results in significant operational benefits:
 - higher system NOx conversion due to ability of SCR catalyst to utilize NH$_3$ and HCs for NOx reduction
 - lower NH$_3$ and HC emissions
 - lower H$_2$S and N$_2$O emissions
 - ability to compensate for decreased LNT activity after aging (NOx reduction increasingly shifted towards SCR catalyst)

• The use of NTP, combined with perovskites possessing high NOx storage capacity, represents a promising approach for low temperature NOx storage-reduction
Acknowledgements

• Funding:
 Department of Energy, Vehicle Technologies Program

• Project partners:
 ORNL
 Ford Motor Co.
 University of Houston: M. Harold
 BASF: C.Z. Wan

• Dalian University of Technology