

Synergy of LNT and SCR Catalysts in Coupled LNT-SCR Systems

J. Wang, Y. Ji, D. Kim, M. Crocker, Center for Applied Energy Research, University of Kentucky

M.-Y. Kim, J.-S. Choi Fuels, Engines & Emissions Research Center, ORNL

M. Dearth, R.W. McCabe Chemical Engineering Dept., Ford Motor Co.

C. Shi, Z. Zhang, L. Xu, A. Zhu, Dalian University of Technology, Dalian, People's Republic of China

CLEERS Workshop, April 12, 2013

E-mail: mark.crocker@uky.edu

Synergy of LNT and SCR Catalysts in Coupled LNT-SCR Systems

Overview:

- Coupled LNT-SCR systems: concept and development
- Role of HCs in NOx reduction over coupled LNT-SCR (Cu-CHA) system
- NOx reduction using HCs and NH₃ over Cu-CHA
- Mitigation of N₂O and H₂S emissions over Cu-CHA in LNT-SCR configuration
- Plasma-assisted LNT catalyst regeneration
- Summary

LNT-SCR Concept: Utilization of In Situ NH₃

- "Classical" explanation:
 - LNT produces NH₃ during rich purges (similar to TWC under rich engine conditions)
 - NH₃ stores on downstream SCR catalyst
 - Stored NH₃ reacts with "breakthrough" NOx during lean operation
 - Similar to urea-SCR except that NH_3 is generated "in-situ" or "passively" by the LNT

D. Chatterjee, P. Koči, V. Schmeisser, M. Marek, M. Weibel, B. Krutzsch, Catal. Today 151 (2010) 395.

P. Forzatti, L. Lietti, Catal. Today 155 (2010) 131.

F. Plát, S. Bártová, J. Štěpánek, P. Kočí, M. Marek, Ind. Eng. Chem. Res. 49 (2010) 10348.

A. Lindholm, H. Sjövall, L. Olsson, Appl. Catal. B 98 (2010) 112.

L. Xu, R. McCabe, M. Dearth, W. Ruona, SAE Technical Paper 2010-01-0305 (2010).

E.C. Corbos, M. Haneda, X. Cortois, P. Marecot, D. Duprez, H. Hamada, Appl. Catal. A 365 (2009) 187-193.

LNT-SCR Concept: History

- First U.S. patent to DaimlerChrysler in 2001 (US 6,176,079)
- Other U.S. patents to SwRI, Ford, Eaton, DaimlerChrysler, GM, BASF, Umicore, Johnson-Matthey
- First open literature publications: 2006, Eaton Corp., use of LNT-SCR system for HDD applications 2006-2007, Ford, use of LNT-SCR for LDD applications
- First application: Daimler, BlueTEC Mercedes E320 (introduced in October 2006 in U.S.)
- 2nd generation LNT-SCR system reported by Ford in 2009 (Fe-zeolite SCR catalyst replaced by Cu-CHA)
- LNT-SCR system models published: 2009-2010: Daimler group 2010: Kočí et al. 2012: Balakotaiah et al.

LNT-SCR Concept: Applications

BlueTEC Mercedes E320 (MY 2007 in U.S.) and E300 (MY2008 in Europe) V6 CDI engine

- Aimed at Tier II Bin 8, corresponding to ca. 50% NOx conversion requirement
- DOC-LNT-CDPF-SCR exhaust catalyst configuration
- Function of SCR catalyst appears to have been mainly for avoidance of NH₃ slip
- Used in MY2007-2009
- Superceded by BlueTEC II urea-SCR system (Tier II, Bin 5)

M. Weibel, N. Waldbüβer, R. Wunsch, D. Chatterjee, B. Bandl-Konrad, B. Krutzsch, Top. Catal. 52 (2009) 1702. J. Schommers, H. Breitbach, AutoTechnology, 7(3) (2007) 48.

2nd Generation LNT + SCR

- Key points:
 - enabled by advances to <u>both</u> LNT catalyst technology and SCR catalyst technology
 - NH₃ in situ mechanism does not fully explain LNT+SCR vehicle data: HC-SCR in Cu-CHA catalyst also contributes to NOx reduction
 - Cu-CHA also plays active role in mitigation of $\rm N_2O$ and $\rm H_2S$ emissions
 - excellent NOx reduction activity of Cu-CHA catalyst (and stability w.r.t. aging) enables decrease in LNT PGM loadings

L. Xu, R. McCabe, M. Dearth, W. Ruona, SAE Technical Paper, 2010-01-0305.
L. Xu, R. McCabe, P. Tennison, H.-W. Jen, SAE Technical Paper, 2011-01-0308.
J. Wang, Y. Ji, Z. He, M. Crocker, M. Dearth, R.W. McCabe, Appl. Catal. B 111-112 (2012) 562.

Vehicle Testing: Steady-Speed (Ford data: R. McCabe and M. Dearth)

NH₃ produced cannot explain extra NOx conversion by SCR catalyst

Reactor Studies

LNT-SCR studies:

- BASF catalysts:
 Low PGM-loaded LNT +
 Cu-chabazite SCR catalyst
- 3" x 0.9" cores, de-greened at 500 °C for 5 h under L/R cycling
- Separate catalysts/reactors with gas sampling at three positions
- 60 s lean/5 s rich cycles
- Gas analysis using FTIR gas analyzer

NOx and NH₃ Conversion in LNT-SCR System: Effect of Added Propene (Rich Phase)

Benefit of SCR catalyst most apparent when hydrocarbon (propene) is present \rightarrow SCR catalyst is able to utilize propene - or a derivative thereof - as a reductant

J. Wang, Z. He, Y. Ji, M. Crocker, M. Dearth, R.W. McCabe, Appl. Catal. B 111-112 (2012) 562

Nitrogen Balance Across SCR Catalyst Reductant = $1\% CO + 0.3\% H_2 + 3333 ppm C_3H_6$

LNT Inlet Temperature (°C)	NH ₃ converted over SCR catalyst (ppm)	NOx converted over SCR catalyst (ppm)	NH ₃ converted – NOx converted (ppm)	
149	0.1	9.3	-9.1	
166	0.3	6.7	-6.3	
183	0.9	23.9	-23.0	
196	1.9	21.5	-19.6	
232	8.7	52.6	-43.9	
232	11 0	A2 A	-30.5	
215	14.6	76.0	12.2	
275	14.0	20.0	-12.2	
3/5	12.9	21.1	-11.8	
421	11.4	34.7	-23.3	

Speciation Study of LNT Exhaust Gas

- FT-IR applied to study formation of potential NOx reductants over LNT (other than NH₃); only HCN is consistently observed in gas phase, but in low concentrations
- GC-MS also failed to detect significant gas phase organo-N species
- Hence, formation of organonitrogen species over LNT does not appear to be important for SCR
- Slipped hydrocarbon is responsible for NOx reduction in SCR catalyst

Measured HCN downstream of LNT during lean/rich cycling (for 3 different reductant mixtures)

NOx Conversion over Cu-zeolite SCR Catalyst During Leanrich Cycling: C₃H₆ and C₂H₄ as Rich Phase Reductants

SCR catalyst only:

Lean (60 s): 300 ppm NO, 8% O_2 , 5% CO_2 , 5% H_2O , N_2 as balance; Rich (5 s): 300 ppm NO, 3333 ppm C_3H_6 or 5000 ppm C_2H_4 , O_2 as indicated, 5% CO_2 , 5% H_2O , N_2 as balance

- Cycle-averaged NOx conversion is higher than theoretical value if NOx is only reduced during rich phase => hydrocarbon storage + lean phase NOx reduction
- NOx conversion is sensitive to O₂ content of feed

Steady State NOx Conversion over Cu-zeolite SCR Catalyst

Conditions: 300 ppm NO, 5% CO_2 , 5% H_2O , N_2 balance, GHSV = 30,000 h⁻¹

- Propylene and ethylene show moderate activity for NOx reduction over SCR catalyst under steady-state and cycling conditions
- NOx conversion is sensitive to O₂ content of feed

Adsorption of C₃H₆ on Cu-chabazite SCR Catalyst

Breakthrough curves for C₃H₆ adsorption on Cu-CHA

 C_3H_6 -TPD profiles obtained after evacuation of the C_3H_6 saturated Cu-CHA samples

Arrhenius plot of Henry's constant values obtained from Langmuir isotherm model

- Maximum C_3H_6 loading (72 °C) = 3.6 wt%
- Magnitude of heats of adsorption consistent with chemiand physisorption; chemisorption is indicated to be strong
- TPD experiments (Cu-CHA and Cu-leached samples): desorption peak at 250 °C due to propene adsorbed on Cu²⁺; desorption peaks at 150 °C and 330 °C due to propene adsorbed on (non-Cu) acidic sites in zeolite
- In addition to propene, many other desorbed species are observed: C₂H₂, C₂H₄, C₂H₆, C₄H₈, CO, CO₂, H₂O, etc.

Spatiotemporal Analysis of NOx Reduction by NH₃ & C₃H₆ over Cu-chabazite During Lean/Rich Cycling

	NH ₃		C ₃ H ₆		$NH_3 + C_3H_6$	
	Lean (60 s)	Rich (5 s)	Lean (60 s)	Rich (5 s)	Lean (60 s)	Rich (5 s)
NO (ppm)	300	300	300	300	300	300
O ₂ (%)	8	1	8	1	8	1
$C_{3}H_{6}$ (ppm)	0	0	0	3333	0	3333
NH ₃ (ppm)	0	300	0	0	0	300
CO ₂ (%)	5	5	5	5	5	5
H ₂ O (%)	5	5	5	5	5	5
N ₂ (%)	Balance	Balance	Balance	Balance	Balance	Balance

• Bench-reactor experimental conditions

- Total flow: 13.7 L/min (equivalent to 30K SV for 3-in core: 1L)

- Temperature: 200, 250, 300, 350, 400, 450 °C

• Spatiotemporal resolution of reactions

NOx Reduction by NH₃

- NOx reduction occurs both in rich & lean phases
- Greater portion of NOx reduction in lean phase at lower temperatures
 - Due to lower reduction rate & higher NH₃ storage

Significant NOx Reduction by C₃H₆ Above 250 °C

- NOx reduction occurs both in rich & lean phases (3 "regimes" at 350, 400, 450 °C)
- Greater portion of NOx reduction in lean phase at 300 °C than at 450 °C
 - Due to lower reduction rate & higher C_3H_6 storage (see peak tails)

NH₃ Could be Surface Intermediate

Temperature ramp (200 \rightarrow 500 °C) after C₃H₆ cycling at 450 °C \rightarrow 200 °C; catalyst was purged with O₂, H₂O and CO₂ at 200 °C before the TPD

- High-T release of NH₃ suggests its formation, storage & usage on surface only
 - Could explain "3rd" NOx reduction regime (peak in lean phase) observed during C₃H₆ cycling at 350, 400, 450 °C

Fractional catalyst length

Effects of NH₃ & C₃H₆ on NOx Reduction are Additive

¹⁵N¹⁸O Experiments Performed to Probe the Chemistry of NH₃ Intermediate

Bench-reactor experimental conditions

	NH ₃		C ₃ H ₆		$NH_3 + C_3H_6$	
	Lean (60 s)	Rich (5 s)	Lean (60 s)	Rich (5 s)	Lean (60 s)	Rich (5 s)
¹⁵ N ¹⁸ O (ppm)	600	600	600	600	600	600
O ₂ (%)	8	1	8	1	8	1
C ₃ H ₆ (ppm)	0	0	0	3333	0	3333
NH ₃ (ppm)	0	600	0	0	0	600
CO ₂ (%)	5	5	5	5	5	5
H ₂ O (%)	5	5	5	5	5	5
Ar (%)	Balance	Balance	Balance	Balance	Balance	Balance

- Total flow: 6.9 L/min

- Catalyst length: 0.75 in

- Temperature: 350 °C

Note: higher NO, NH₃ concentrations & lower flow rate used to facilitate MS analysis

¹⁵N¹⁸O Experiments Performed to Probe the Chemistry of NH₃ Intermediate (cont.)

• Gas effluent analysis

- Mass spectrometer (EI, quadrupole)
- Monitored mass-to-charge ratios (m/z):
 - Reductants: 24 (C₂H₄), 28 (CO, C₂H₄), 29 & 30 (aldehydes), 41 (C₃H₆)
 - O₂: 34 (¹⁸O¹⁶O)
 - NO: 31 (¹⁵N¹⁶O major component at outlet)
 - N₂: 29 (¹⁵N¹⁴N), 30 (¹⁵N₂)
- · Cross-sensitivity issues have been considered

C₃H₆ Contributes to NH₃ Formation but Inhibits NH₃-NO Reaction

- 2 regimes of ¹⁵NO reduction during NH₃ cycling
 - Rich phase (I); early lean phase (II)
- 3 regimes of ¹⁵NO reduction during C₃H₆ cycling
 - Rich phase (I); early lean phase (II); mid lean phase (III; starts when HC's are depleted)
- Regimes I & II of ¹⁵NO reduction during C₃H₆ cycling lead exclusively to ¹⁵NH₃
 - Third regime (III) utilizes stored $^{15}NH_3$ producing $^{15}N_2$
- Adsorbed hydrocarbons slow kinetics of NH₃ utilization (i.e., ¹⁵N¹⁴N formation)
 - cf. unaffected NH₃ storage capacity & additive effect on cycle-averaged NO conversion 23

Mitigation of H₂S Emissions by Cu-CHA SCR Catalyst Desulfation Comparison: LNT-only vs. LNT-SCR

Cu-CHA SCR catalyst virtually eliminates H_2S emissions produced by LNT during rich high-temperature desulfation (H_2S from LNT converted to SO_2) – more detail in SAE 2009-01-0285 (L. Xu et al.)

N₂O Reduction Over Cu-CHA SCR Catalyst

Cycle-averaged N_2O conversion over SCR catalyst during 60 s lean/5 s rich cycling :

Lean: 300 ppm NO, 8% O₂, 5% CO₂, 5% H₂O, N₂ as balance; Rich: 300 ppm NO, 1% H₂ or 1% CO or 3333 ppm C₃H₆ as reductant, 5% CO₂, 5% H₂O, N₂ as balance; GHSV = 30,000 h⁻¹

- \succ H₂ best reductant for N₂O
- ➤ No reductant breakthrough from LNT observed at ≥400 °C, hence N₂O conversion tails off (implies that N₂O decomposition must be occurring)

N₂O Reduction Over Cu-CHA SCR Catalyst

Comparison of gas composition behind LNT and SCR catalysts during lean-rich cycling (1% C_3H_6 as reductant, 360 s lean, 30 s rich; 375 °C)

N₂O Reduction Over Cu-CHA SCR Catalyst

Comparison of N₂O concentrations behind LNT & SCR catalysts (360 s lean, 30 s rich):

- Increased N₂O formation over LNT when using CO as reductant, compared to H₂ (consistent with Abdulhamid *et al.* and LePhuc *et al.*)
- For CO, N₂O formation observed at L-R and R-L transition (consistent with Elizundia *et al.*)
- Some N₂O conversion occurs before reductant has broken through, implying N₂O decomposition

H. Abdulhamid, E. Fridell, M. Skoglundh, Top. Catal. 30/31 (2004) 161.

N. Le Phuc, X. Cortois, F. Can, S. Berland, S. Royer, P. Marecot, D. Duprez, Catal. Today 176 (2011) 424.

U. Elizundia, D. Duraiswami, B. Pereda-Ayo, R. Lopez-Fonscea, J.R. Gonzalez-Velasco, Catal. Today, 176 (2011) 324.

N₂O Reduction Over Cu-CHA SCR Catalyst: Steady-state Continuous Flow (1)

Feed: 100 ppm N₂O, 5% CO₂, reductant as shown, bal. N₂; GHSV = 30,000 h⁻¹

- H₂ best reductant, followed by NH₃
- N₂O reduction not inhibited by water; v. slight inhibition of decomposition reaction
- Slight promoting effect with water for reduction using CO or C₃H₆: implies in situ formation of H₂ via WGS or steam reforming

N₂O Reduction Over Cu-CHA SCR Catalyst: Steady-state Continuous Flow (2)

- N₂O decomposition is weakly promoted by NO, e.g.: N₂O + NO \rightarrow N₂ + NO₂
- Effect appears to be catalytic, rather than stoichiometric (e.g., may facilitate migration of adsorbed O through NO₂ intermediates, enhancing the recombination of O atoms)*

^{*} Pérez-Ramírez J, Kapteijn F, Mul G, Moulijn JA (2002) J Catal 208: 211. Kaucký D, Sobalik Z, Schwarze M, Vondrová A, Wichterlová B (2006) J Catal 238:293.

LNT-SCR System Aging

LNT-SCR system aged on bench reactor according to Ford accelerated aging protocol (*ca*. 75,000 miles)

Cycle-averaged NOx conversion for BASF LNT and LNT-SCR systems

Feed: lean (60 s): 500 ppm NO, 8% O₂, 5% CO₂, 5% H₂O, balance N₂; rich (5 s): 2.5% CO, 5% CO₂, 5% H₂O, balance N₂. GHSV = 60,000 h⁻¹.

- ➤ After aging, deterioration in LNT NOx conversion is observed; based on analytical data, this can be attributed to accumulation of residual sulfate in washcoat and Pt-Ba phase segregation (→ decreased NOx storage capacity)
- After aging, NOx conversion over SCR catalyst is increased, due to increased LNT selectivity to NH₃ and increased NOx slip available for reaction
- Hence, SCR catalyst helps to compensate for deterioration in LNT NOx conversion

<u>The 150 °C Challenge</u>: Non-thermal Plasma-Assisted NOx Storage-Reduction on Perovskite LNT Catalysts

- Limiting factors for LNT operation at low temperatures are ability to:
 (i) store NOx
 (ii) regenerate storage sites
 - (iii) reduce released NOx
- Concept:
 - apply perovskites for (i)
 - apply non-thermal plasma for (ii) and (iii)*

Catalyst	NO _x storage capacity (µmol/g)					
	30 °C	100 °C	200 °C	300 °C	400 °C	
Pt/30BaO/Al ₂ O ₃	86.9	152.1	219.6	398.9	508.1	
$LaMn_{0.9}Fe_{0.1}O_3$	380.5	371.6	385.4	392.3	306.3	

500 ppm NO, 8% O₂, N₂ bal., 50 min, GHSV = 30,000 h^{-1}

* Production of H₂-rich gas for LNT regeneration using plasmatron fuel reformer:
L. Bromberg, D.R. Cohen, A. Rabinovich, J. Heywood, Int. J. Hydrogen Energy, 26 (2001) 1115.
R. Mital, B.J. Stroia, R.C. Yu, U.S. patent 7,377,101 (2008).

Comparison of First Cycle and Cycle-averaged NOx Storage Capacities for Fully Formulated LNT Catalysts

LNT performance severely limited at 150 °C by ability to regenerate NOx storage sites

Y. Ji, C. Fisk, V. Easterling, U. Graham, A. Poole, M. Crocker, J.-S. Choi, W. Partridge, K. Wilson, Catal. Today, 151 (2010) 362.

Non-thermal Plasma-Assisted NOx Storage-Reduction: Experimental Details

Dielectric-barrier discharge reactor

 H_2 or Ar non-thermal plasma applied in rich phase

Discharge power = 20 w

Effluent gases analyzed using MS

A.J. Zhang, A.M. Zhu, J. Guo, Y. Xu, C. Shi, *Chem. Eng. J.*, 156 (2010) 601.

NOx Conversion Under Lean-Rich Cycling w/o NTP: LaMn_{0.9}Fe_{0.1}O₃

Lean (10 min): 500 ppm NO, 8% O₂, bal. Ar

Rich (2 min): 1% H₂, bal. Ar; GHSV = 10,000 h⁻¹

Catalyst pre-treatment in 1% H_2 at 500 °C for 1 h

Low rich phase NOx reduction activity of LaMn_{0.9}Fe_{0.1}O₃ responsible for poor NOx conversion under lean-rich cycling

NOx Conversion Under Lean-Rich Cycling with NTP: LaMn_{0.9}Fe_{0.1}O₃

90% NOx conversion obtained at 30 °C for LaMn_{0.9}Fe_{0.1}O₃ under these conditions

C. Shi, Z. Zhang, M. Crocker, L. Xu, C. Wang, C. Au, A. Zhu, *Catalysis Today* (2013), http://dx.doi.org/10.1016/j.cattod.2013.03.008

Summary (1)

- Reactor studies have shown that a hydrocarbon-based NOx reduction pathway (ethylene and propylene studied) can operate on a Cu-chabazite SCR catalyst in parallel with the NH₃-SCR pathway
- The contribution of hydrocarbons to NOx reduction is most evident under conditions of low NH₃ availability
- NH₃ is formed as an intermediate in NOx reduction by propene on the SCR catalyst
- The presence of propene slows the kinetics of (co-fed) NH₃ utilization by NOx on the SCR catalyst, but doesn't affect cycle-averaged NH₃ utilization (60 s lean/5 s rich cycles) except at *very* high concentrations
- Propene adsorbs strongly in the Cu-chabazite catalyst; at high temperatures, propene is converted to a variety of products (via oligomerization, cracking, oxidation, etc.)

Summary (2)

- The synergy of coupled LNT-SCR systems results in significant operational benefits:
 - higher system NOx conversion due to ability of SCR catalyst to utilize $\rm NH_3$ and HCs for NOx reduction
 - lower NH₃ and HC emissions
 - lower H₂S and N₂O emissions
 - ability to compensate for decreased LNT activity after aging (NOx reduction increasingly shifted towards SCR catalyst)
- The use of NTP, combined with perovskites possessing high NOx storage capacity, represents a promising approach for low temperature NOx storage-reduction

Acknowledgements

• Funding:

Department of Energy, Vehicle Technologies Program

• Project partners:

ORNL Ford Motor Co. University of Houston: M. Harold BASF: C.Z. Wan

• Dalian University of Technology