<u>UK</u>_____

The Effect of Ceria on the Performance of Lean NOx Trap Catalysts

Mark Crocker^a, Yaying Ji^a, Todd J. Toops^b, Jae-Soon Choi^b ^a Center for Applied Energy Research, University of Kentucky ^b Fuels, Engines and Emissions Research Center, ORNL

May 2, 2007

Background: Ceria in LNT Catalysis

- Role of ceria:
 - OSC for stoichiometric operation in lean-burn gasoline engines
 - water-gas shift activity for *in situ* H₂ generation:
 » facilitates LNT regeneration at low temperatures
 » facilitates LNT desulfation at moderate temperatures
 - NOx storage at low temperatures (<300 °C)
- Use of ceria may prove critical for low temperature applications, e.g., LD diesel (typical FTP temperatures of ~150-340 °C)
- Role of ceria largely ignored in literature LNT studies

J. Theis, J. Ura, C. Goralski Jr., H. Jen, E. Thanasiu, Y. Graves, A. Takami, H. Yamada, S. Miyoshi, SAE 2003-01-1160 T. Morita, N. Suzuki, N. Satoh, K. Wada, H. Ohno, SAE 2007-01-0239.

Objectives

- Confirm role of ceria
- Quantify effect of ceria in fresh and aged catalysts
- Study divided into two parts:
 - Powder model catalysts: Pt/Ba/Al₂O₃ with and without added Pt/CeO₂
 - Monolithic model catalysts

Part I: Powder Model Catalysts

Experiments performed in a microreactor equipped with mass spectrometer

Investigate effect of ceria on LNT functioning, including:

- NOx storage capacity under continuous lean flow
- Storage-regeneration behavior under long cycle conditions
- Regeneration efficiency

> Two catalysts were prepared:

- 1 wt% Pt/BaO/Al₂O₃ ("PBA")
- 1 wt% Pt/BaO/Al₂O₃ (74 wt%) + 1 wt% Pt/CeO₂ (26 wt%), physical mixture ("PBAC")

Intrinsic NOx Storage Capacity

PBA

IK

Comparison of Static NOx Storage Capacity (after H₂ pretreatment)

T = 200 °C

$T = 300 \ ^{\circ}C$

Ceria-containing catalyst (PBAC) shows clear advantage at 200 and 300 °C

PBA – SS Cycling at 30k h⁻¹

30 sec Rich – 3375 ppm H₂, 5625ppm CO, 5% H₂O and CO₂ 6 minutes Lean – 300 ppm NO, 8% O₂, 5% H₂O and CO₂

PBAC – SS Cycling at 30k h⁻¹

30 sec Rich – 3375 ppm H₂, 5625ppm CO, 5% H₂O and CO₂ 6 minutes Lean – 300 ppm NO, 8% O₂, 5% H₂O and CO₂

2 0 Time (minutes) 83% NO conversion

6

200

150 g

100

50

0 -50

Comparison of NOx storage, release and reduction during lean/rich cycling

Catalyst	Temp (°C)	NOx stored (<i>µ</i> mol/g)	NOx rel. ^a (<i>µ</i> mol/g)	NOx conv. (<i>µ</i> mol/g)			NOx conv. ^b	^o N ₂ sel. ^c
				Total	NOx→N ₂	$NOx \rightarrow NH_3 + N_2O$	(%)	(%)
PBA	200	29.9	1.6	28.3	23.3	5.0	45.9	82.3
	300	47.4	0.5	46.9	32.4	14.5	75.9	69.1
	400	46.4	0.9	45.5	35.5	10.0	73.8	78.0
PBAC	200	42.8	1.7	41.1	37.8	3.2	66.6	92.2
	300	56.0	0.5	55.5	42.0	13.5	90.0	75.7
	400	51.8	1.1	50.7	44.4	6.3	82.1	87.6

^a: the amount of NOx released after the switch from lean to rich phase; ^b: NOx conversion = ((NOx stored during lean phase – NOx released during switch)/total inlet NO) x 100; ^c: N_2 selectivity = (NOx converted to N_2 /total NOx converted during rich period) x 100.

LNT Regeneration Studies

> Method:

UK

 Microreactor equipped with mass spectrometer during temperature-programmed reduction with H₂ or CO reductant

Procedure:

- Pre-treat catalyst in H₂ at 450 ° C (30 min)
- Store NOx at 300 °C (300 ppm NO and 8% O₂ in Ar)
- Cool to RT in Ar
- Start TPR in rich feed gas with a ramp of 5 °C/min; evolved species monitored by MS

TPR under 2000 ppm H₂

H₂ consumption over PBAC commenced at a lower temperature than PBA
 N2 evolution complete at

TPSR under CO + H₂O

PBAC - 3000 ppm CO + 5% H₂O

PBA - 3000 ppm CO + 5% H₂O no NO stored

UK

- Water-gas shift reaction took place on both catalysts
- PBAC exhibited higher H₂ production than PBA at low temperatures (<275 °C)

Center for Applied Energy Research

Summary of TPR Study

Catalyst	TPR	H ₂ consumption		N ₂ release	
		T _{start} (°C)	T _{end} (°C)	T _{start} (°C)	T _{end} (°C)
PBA	H ₂	150	385	150	384
	$H_2 (w/H_2O)$	110	340	125	353
	CO		······	195	500
	CO (w/ H ₂ O)			175	399
PBAC	H ₂	81	305	130	307
	$H_2 (w/H_2O)$	35	345	127	342
	CO			193	431
	CO (w/ H ₂ O)			118	371

UK

Summary of Powder Model Catalyst Studies

- PBAC shows superior NOx storage capacity to PBA at T \leq 300 °C (for H_2 and O_2 pretreatments)
- In lean/rich cycling, PBAC shows superior *effective* NOx storage capacity to PBA at 200 °C, 300 °C and 400 °C
- Rich phase NOx slip during cycling is similar for PBA and PBAC, hence overall NOx conversion is significantly higher for PBAC during L/R cycling
- Reduction of stored NOx reaches completion at lower temperatures on PBAC than on PBA (H₂ TPR)

Part II: Monolithic Catalysts

To examine effect of ceria on performance of monolithic catalysts under realistic cycling conditions

> Catalyst preparation:

- Focus on LNTs for diesel applications
- Employ model catalysts which are representative of 2^{nd} generation LNT formulations (\Rightarrow use of ceria; also of relevance for lean-burn gasoline LNTs)
- Monolithic catalysts with systematic variation of ceria concentration

Monolithic Catalyst Compositions

Component	Loading				
	30-0	30-50	30-100	30-100Z	
Pt, g/L (g/cuft)	3.53 (100)	3.53 (100)	3.53 (100)	3.53 (100)	
Rh, g/L (g/cuft)	0.71 (20)	0.71 (20)	0.71 (20)	0.71 (20)	
BaO, g/L	30	30	30	30	
CeO ₂ , g/L	0	50	100		
CeO ₂ -ZrO ₂ , g/L		-		100	
Al ₂ O ₃ , g/L	Balance	Balance	Balance	Balance	

Total washcoat loading = 260 g/L

Baseline Catalyst Testing

- Bench (core) reactor
- > Testing procedure:

- De-green catalyst at 500 °C under lean-rich cycling for 5 h
- Measure oxygen storage capacity at 350 °C under lean-rich cycling
- Lean-rich cycling with NO at 350 °C.
- Fully regenerate catalyst at 500 °C in H_2/Ar flow (with 5% $CO_2 \& 5\% H_2O$) prior to testing at next temperature

Oxygen Storage Capacity

Lean (60 s) : $10\%O_2$, $5\%CO_2$ and $5\%H_2O$; Rich (5 s) : $4.2\%H_2$, $5\%CO_2$ and $5\%H_2O$, with N₂ as balance (GHSV = 30,000 h⁻¹, T= 350 °C)

Center for Applied Energy Research 🗏

UK

Catalyst	Ave.OSC	
	(mmol/L)	
30-0	10.8	
30-50	19.1	
30-100	28.0	
30-100Z	36.6	

OSC increases with ceria loading and Ce-Zr mixed oxide shows a much higher OSC than ceria

Test conditions

Component	Lean phase	Rich phase	
NO (vppm)	300	300	
CO (%)	0	2.625	
H ₂ (%)	0	1.575	
O ₂ (%)	10	0	
CO ₂ (%)	5	5	
H ₂ O (%)	5	5	
N ₂	Balance	Balance	
GHSV (h ⁻¹)	30,000	30,000	
Т (°С)	150, 250, 350, 450	150, 250, 350, 450	
Duration (s)	60	5	

UK

NOx storage and release

T = 150 °C

Enhanced NOx storage capacity with increasing ceria loading

Rich phase NOx release also increases with ceria loading
 inbalance between NOx reduction rate and NOx release rate

Center for Applied Energy Research 🔳

IIK

NOx storage and release

T = 350 °C

All catalysts show high NOx storage capacity and low rich phase NOx release

IIK

NOx storage and release

T = 450 °C

Significant rich phase NOx release resulting from thermal instability of stored NOx

Benefit of ceria addition is no longer obvious

Center for Applied Energy Research 📰

IIK

NOx reduction

T = 150 °C

NH₃ and N₂O formation increased with increasing ceria loading

ШK

UK

NOx reduction

T = 350 °C

Significant NH₃ formation for 30-0; NH₃ make follows the order: 30-0 > 30-50 > 30-100

Baseline Catalyst Testing: Summary

Catalyst	Temp (°C)	NOx conv. (%)	N ₂ sel. (%)
30-0	150	14.1	18.0
	250	94.0	31.5
	350	95.9	66.4
	450	67.3	66.7
30-50	150	25.1	37.5
	250	99.6	73.0
	350	99.8	89.6
	450	85.5	91.3
30-100	150	34.6	20.9
	250	98.6	76.8
	350	98.6	95.8
	450	64.1	94.7
30-100Z	150	21.6	38.2
	250	96.5	79.3
	350	97.4	97.0
	450	67.8	96.6

Center for Applied Energy Research

UK

Baseline Catalyst Testing: Summary (1)

- All catalysts show high activity (NOx conversions of > 95%) in the range 250 - 350 °C
- High selectivity to N₂O found at 150 °C for all catalysts, decreases with temperature

In general, ceria-containing catalysts showed much higher N₂ selectivity than ceria-free catalyst. N₂ selectivity increases in the order : 30-0 < 30-50 < 30-100 < 30-100Z, in line with their OSC:

→ low OSC results in higher effective concentration of reductant, leading to "over-reduction" of stored NOx to NH_3 ? → reaction of NH_3 with oxygen stored in rear of catalyst ?

Baseline Catalyst Testing: Summary (2)

- Presence of ceria increases *effective* low temperature NOx storage capacity (much lower NO₂ slip for 30-100 at 150 °C relative to 30-0)
- NOx conversion at 150 °C for 30-100 mainly limited by kinetics of NOx reduction (imbalance in rates of NOx release and reduction results in high rich phase NOx slip)
- NO oxidation does not appear to be limiting at 150 °C, except for catalyst 30-100

Summary of Main Findings to Date

- Powder and core tests on the fresh catalysts have identified significant effects associated with the presence of ceria:
 - increased NOx storage, particularly at low temperatures
 - increased water-gas shift activity at low temperatures
 - lowering of reduction temperatures for stored NOx
 - improved selectivity to N_2 during reduction of stored NOx (versus NH_3)
 - significantly higher NOx conversion levels at T $\leq 250~^\circ\text{C}$
 - sizeable exotherms during rich operation

Outstanding Issues

- Does the ability of Pt/CeO₂ to store NOx result in decreased formation of bulk Ba(NO₃)₂ (and hence improve ease of regeneration of Ba phase)?
- Does Pt/CeO₂ play a role in sulfur storage, thereby lessening BaSO₄ formation (and hence improve ease of desulfation of Ba phase)?
- In situ XRD studies required to quantify extent of bulk Ba(NO₃)₂ and BaSO₄ formation in PBA and PBAC catalysts
- Effect of aging on performance of ceria-rich catalysts

Acknowledgements

Catalyst preparation:

DCL Int.: Mojghan Naseri Shazam Williams Umicore: Owen Bailey

Funding:

Department of Energy

ЦK