Effect of Ceria on the Sulfation and Desulfation Characteristics of Lean NO$_x$ Trap Catalysts

Y. Ji, V. Easterling, M. Crocker,
Center for Applied Energy Research, University of Kentucky

T.J. Toops
Fuels, Engines and Emissions Research Center, ORNL

J. Theis, J. Ura, R.W. McCabe,
Ford Innovation and Research Center

May 13, 2007
Background: Ceria in LNT catalysis

• Role of ceria:
 - OSC for stoichiometric operation in lean-burn gasoline engines
 - Water-gas shift activity for \(\textit{in situ} \) \(\text{H}_2 \) generation:
 » facilitates LNT regeneration at low temperatures
 » facilitates LNT desulfation at moderate temperatures
 - \(\text{NOx} \) storage at low temperatures (<350 °C)

• Use of ceria may prove critical for low temperature applications, e.g., LD diesel (typical FTP temperatures of ~150-340 °C)

• Role of ceria largely ignored in literature LNT studies

Objectives

• Understand role of ceria in mitigating sulfur deactivation of LNT catalysts
• Quantify effect of ceria in fresh and aged catalysts
 - This talk will focus on fresh/degreened catalysts
• Study divided into two parts:
 - Powder model catalysts: Pt/Ba/Al₂O₃ with and without added Pt/CeO₂
 - DRIFTS and microreactor
 - Monolithic model catalysts
DRIFTS STUDY
Part I: Powder model catalysts

- DRIFTS studies performed in an environmental cell:
 - *in situ* observations during LNT sulfation and desulfation

- Experiments also performed in a microreactor equipped with mass spectrometer:
 - measurement of NOx storage capacity after sulfation and desulfation
 - temperature-programmed desulfation

- Two catalysts were prepared:
 (1) 1 wt% Pt / 20 wt% BaO / Al₂O₃ (“PBA”)
 (2) 1 wt% Pt / 20 wt% BaO / Al₂O₃ (74 wt%) + 1 wt% Pt / CeO₂ (26 wt%), physical mixture (“PBAC”)
Sulfation of PBA without added H₂O

1418, 1323 cm⁻¹: mono-/bidentate Ba nitrate
1130 cm⁻¹: surface/bulk Ba sulfate
1560 cm⁻¹: Al-based nitrate

- 300°C, 27 ppm SO₂
- Strong nitrate bands
- Slow formation of surface Ba sulfate

1168 cm⁻¹ = bulk Ba sulfate
1107 cm⁻¹ = surface Ba sulfate
Sulfation of PBA with added H$_2$O

1420/1320 cm$^{-1}$: mono-/bidentate Ba nitrate

1122 cm$^{-1}$: surface/bulk Ba sulfate

- 300°C, 27ppm SO$_2$
- Strong sulfate bands \Rightarrow H$_2$O facilitates sulfate formation
- Reduction in intensity of nitrate bands towards end of experiment \Rightarrow displacement of nitrate by sulfate
Sulfation of PBAC without added H$_2$O

- 1542, 1516 cm$^{-1}$: Ce monodentate nitrate
- 1414, 1323 cm$^{-1}$: Ba mono-/bidentate nitrate
- 1140 cm$^{-1}$: surface/bulk BaSO$_4$

- 300°C, 27ppm SO$_2$
- Strong nitrate bands
- Slow formation of surface Ba sulfate
- Shift in location of sulfates from 1130 to 1140 cm$^{-1}$...ceria impact
Sulfation of PBAC with added H₂O

- 1538, 1508 cm⁻¹: Ce monodentate nitrate
- 1413, 1325 cm⁻¹: mono-/bidentate Ba nitrate
- 1114 cm⁻¹: surface/bulk BaSO₄

- 300°C, 27ppm SO₂
- Spectra similar to those of PBA sulfated in absence of water...but with much greater nitrate/sulfate ratio
- sulfate location shifts from 1122 to 1114
Sulfation of Pt/CeO$_2$ with added H$_2$O

- 1540 and 1516 cm$^{-1}$: Ce monodentate nitrate;
- Other bands due to Ce sulfate and sulfite species

- 300°C, 27 ppm SO$_2$
- Strong sulfate bands
- Reduction in intensity of nitrate bands towards end of experiment ⇒ displacement of nitrate by sulfate
Comparison of sulfation behavior

Sulfate/Nitrate ratio
- PBA (w/o H₂O): 0.38
- PBAC (w/o H₂O): 0.40
- PBA (w/ H₂O): 2.43
- PBAC (w/ H₂O): 0.51

- Addition of H₂O significantly increased the formation of sulfate relative to nitrate for PBA

 → H₂O improved the Ba dispersion, resulting in greater SOₓ uptake by Ba phase?

 → Formation of surface HSO₃⁻ facilitates sulfate storage on Ba phase?
DRIFT spectra after desulfation at 450 °C

Desulfation conditions: 1% H₂, 5% H₂O, balance Ar, 450 °C, 5 min

- Sulfur can be fully removed from Pt/CeO₂ upon heating to 450 °C
- Residual sulfur on both PBA and PBAC is associated with the Ba phase
DRIFT spectra after desulfation at 550 °C

Desulfation conditions:
1% H₂, 5% H₂O, balance Ar, 550 °C, 30 min

- Residual sulfur associated with the Ba phase not removed at 550 °C
- 550°C limitation of the reactor
MICROREACTOR STUDY
Procedure for sulfation-desulfation experiments

- Powder reactor
- Testing procedure:
 - Pre-treat catalyst at 750 °C under 1% H₂/Ar for 1 h
 - Measure NOx storage capacity (NSC) at 300 °C under continuous lean conditions, 60 min
 (300 ppm NO, 10% O₂, 5% CO₂, 5% H₂O, GHSV = 30,000 h⁻¹)
 - Sulfate catalyst at 300 °C, 120 min
 (27 ppm SO₂)…~1 g S/L monolith equivalent…4 mg S/g_cat
 - Measure NSC as above
 - Desulfate catalyst at 700 °C, 60 min
 (1% H₂, 5% CO₂, 5% H₂O, balance Ar)
 - Measure NSC as above
PBA: Effect of sulfation on NSC

- Loss of NSC after sulfation (32% after 60 min)
- Desulfation improves NSC at short times, no effect at longer storage times
 ⇒ bulk storage sites not fully desulfated?
PBAC: Effect of sulfation on NSC

- Small loss of NSC after sulfation (8% after 60 min)
- Desulfation improves NSC at short times, no effect at longer storage times
 ⇒ bulk storage sites not fully desulfated?
Comparison of NSC between ceria-free and ceria-containing catalysts

<table>
<thead>
<tr>
<th></th>
<th>Before sulfation</th>
<th>After sulfation</th>
<th>After desulfation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx stored (μmol/g)</td>
<td>400</td>
<td>271</td>
<td>322</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>64</td>
<td>44</td>
<td>52</td>
</tr>
<tr>
<td>PBAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx stored (μmol/g)</td>
<td>373</td>
<td>343</td>
<td>339</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>60</td>
<td>56</td>
<td>55</td>
</tr>
</tbody>
</table>

Figures based on 60 min NOx storage time
LNT desulfation studies by TPR

Procedure:

- Pre-treat catalyst 450 °C (O₂, 15 min; then H₂, 15 min)

- Sulfate at 350 °C, lean conditions (100 ppm SO₂, 8% O₂, 5% H₂O, 5% CO₂, balance N₂)

- Desulfation by means of TPR: ramp to 800 °C (5 °C/min), continuous rich conditions (2% H₂, 5% H₂O, 5% CO₂, balance N₂)

- H₂S, SO₂ and COS monitored by CI-MS
TPR of 1 wt% Pt/Al₂O₃ sulfated to 1 g/L and 3 g/L monolith equivalent

- 1 g S/L: H₂S release peaks at 370 °C
- 3 g S/L: SO₂ release peaks at 360 °C, H₂S release at 380 °C
TPR of PBA sulfated to 1 g/L and 3 g/L monolith equivalent

- 1 g S/L: H$_2$S release peaks at 695 °C
- 3 g S/L: H$_2$S release at 380 °C, 682 °C and 772 °C

- 380 °C = Al$_2$O$_3$ desulfation
- 682 °C = surface BaSO$_4$
- 772 °C = bulk BaSO$_4$
TPR of PBAC sulfated to 1 g/L and 3 g/L monolith equivalent

- 463 °C = CeO₂ desulfation
- 684 °C = surface BaSO₄
- 775 °C = bulk BaSO₄

- Ba loading in PBAC = 74% of that in PBA
- But, for PBAC at 1g S/L, sulfur release from Ba phase = ca. 50% of that from PBA
TPR of 1 wt% Pt/CeO₂ sulfated to 3 g/L monolith equivalent

- CeO₂ desulfation occurs at 451 °C
MONOLITH STUDY
Monolithic catalyst compositions prepared:

Part II: Monolithic catalysts

<table>
<thead>
<tr>
<th>Component</th>
<th>Catalyst code / Loading</th>
<th>30-0</th>
<th>30-50</th>
<th>30-100</th>
<th>Pt-100</th>
<th>Pt-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt, g/cuft</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>Rh, g/cuft</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>BaO, g/L</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>CeO$_2$, g/L</td>
<td>0</td>
<td>50</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Al$_2$O$_3$, g/L</td>
<td>Balance</td>
<td>Balance</td>
<td>Balance</td>
<td>Balance</td>
<td>Balance</td>
<td></td>
</tr>
</tbody>
</table>

Total washcoat loading = 260 g/L
Ford Protocol for sulfation/desulfation

- **Sample sulfation:**
 1/1 L/R cycles, 350 °C, 9 ppm SO₂, 500 pm NO, 5% O₂ (L), 10% CO₂, 10% H₂O, 15 h; equivalent to 6.2 g S/L cat.

- **Desulfation #1:**
 Rich conditions: 1.2% CO, 0.4% H₂, 10% CO₂, 10% H₂O, 5 min.; T = 675-750 °C

- **Measurement of lean NOx storage efficiency (#1):**
 5/3 minute L/R cycles, 350 °C

- **Desulfation #2**
 Measurement of lean NOx storage efficiency (#2)

- **Desulfation #3**
 Measurement of lean NOx storage efficiency (#3)

- **Sulfur “burnout”**
 Rich conditions, 10 min, 750 °C

- **Measurement of lean NOx storage efficiency (#4)**
Effect of catalyst composition on required desulfation temperature: catalyst 30-0 (no ceria)

- Required desulfation temperature for optimal NSC $\geq 750 \, ^\circ\text{C}$
Effect of catalyst composition on required desulfation temperature: catalyst Pt-100 (30 g/L ceria)

- Required desulfation temperature for optimal NSC ≈ 725 °C, vs. ~750 °C for catalyst w/o ceria (30-0)

5 min lean storage data at 350 °C
Effect of catalyst composition on efficiency of sulfur removal

Sulfation at 350 °C, continuous lean phase (1 h), sulfation to 6 g S/L

Desulfation by ramping to temp. indicated under 2% H₂, 5% CO₂, 5% H₂O (10 min hold)

- Beneficial effect of ceria confirmed
- Reduction of precious metal content has adverse effect
Conclusions (1)

- DRIFTS studies indicate that H₂O exerts a promoting effect on Ba sulfation.
- BaSO₄ formation is partially suppressed in the presence of CeO₂.
- Consequently, CeO₂-containing catalysts are better able to store NOx during/after sulfation than Ba-only formulations.
- Pt/CeO₂ can be completely desulfated at 450 °C in H₂/Ar.
- For catalyst PBA, BaSO₄ shows two decomposition maxima in H₂: ~685 °C (surface BaSO₄) and ~775 °C (bulk BaSO₄).
Desulfation of surface BaSO$_4$ occurs at a higher temperature for a physical mixture of Pt/Al$_2$O$_3$ + BaO/Al$_2$O$_3$ than for Pt/BaO/Al$_2$O$_3$ (PBA) ⇒ spillover of H$_{ads}$ facilitates decomposition of surface sulfate (as for nitrate*)

The beneficial effect of ceria with respect to LNT desulfation has been demonstrated for fully formulated monolithic catalysts

Acknowledgements

Monolith catalyst preparation:

DCL Int.: Mojghan Naseri
Shazam Williams

Funding:

Department of Energy
(Vehicle Technologies Program)