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Objectives
• Review LNT CLEERs protocol (June 2004 draft)
• Patterns, trends that need to be captured

– Functions of 
• Temperature
• Reductant Amount
• Reductant Type
• Flow rate (space velocity)
• NO – NO2

• Identify “fingerprint” or distinct data features resulting 
from complex behavior
– Transient nature of both device, engine, controls drive the need

to truly understand:
• the reaction and surface chemistry in most of its complexity,
• fluid mechanics,
• and heat transfer of the catalyst
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Reactor Work
• Reactor - Cummins’

automated pilot scale 
catalyst reactor

• ~ 1 week to execute the 
protocol 

• Instrumentation -
– FTIR, UEGO, & NOx 

sensors
– 2 Hz for IR, varied for 

sensors (as high as 10 Hz)
– millisecond data rate 

capable (except IR)

• CLEERS LNT standard 
sample aged at NTRC

1” x 3”
catalyst 
core
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Example: H2/CO Reductant
Run 
No. 

Temp (deg C)+ Gas 
Mix++ 

SV 
(1/hr) 

Lean 
period 
(s) 

Reductant* Regen peak 
(ppm)** 

Regen 
period 
(s)# 

No. of 
cycles 

1 550 1 30,000 0 H2 1,000 900 1 
2 550 2 30,000 60 CO/H2 1.8% 5 30 
3 550 2 30,000 60 CO/H2 0.9% 5 30 
4 550 1 30,000 0 H2 1,000 900 1 
5 463 2 30,000 60 CO/H2 1.8% 5 30 
6 463 2 30,000 60 CO/H2 0.9% 5 30 
7 550 1 30,000 0 H2 1,000 900 1 
8 375 2 30,000 60 CO/H2 1.8% 5 30 
9 375 2 30,000 60 CO/H2 0.9% 5 30 
10 550 1 30,000 0 H2 1,000 900 1 
11 288 2 30,000 60 CO/H2 1.8% 5 30 
12 288 2 30,000 60 CO/H2 0.9% 5 30 
13 550 1 30,000 0 H2 1,000 900 1 
14 200 2 30,000 60 CO/H2 1.8% 5 30 
15 200 2 30,000 60 CO/H2 0.9% 5 30 
16 550 1 30,000 0 H2 1,000 900 1 
17 375 2 15,000 60 CO/H2 1.8% 5 30 
18 550 1 30,000 0 H2 1,000 900 1 
19 375 2 50,000 60 CO/H2 1.8% 5 30 
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Short Cycle Details
• Clean the sample at 550°C, H2 reductant (long 

regeneration, 10 minutes)
• Cool to appropriate T
• 60 seconds lean, 5 seconds rich

– Reductant level described as 2X stored NOX, used 2x 
entering NOX

• 30 cycles at this reductant level
• At end of 30th cycle, switch reductant level to 1x 

entering NOX
• 30 cycles
• Heat to 550°C, clean
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Cycle Average Conversion
• Typical profiles and 

patterns
• Performance loss at 

“extremes”
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Model development 
requires more information 
– the Focus Group 
protocol is designed to 
provide some of that
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Temperature Effects – NO Slip

Temperature Effects - Cycling, 1st Cycle - NO
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High temp – SS reached more quickly

Low temp – cycle dependent

200°C

• Cycle average 
conversion not well 
represented by first 
few cycles
– Regen changes
– Regen efficiency
– Surface N buildup
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Low Temp Experiment

Developing higher 
slip or 
breakthrough 
with each cycle

22 cycles → SS?

“Pretreated” surface leads to 
different trapping profile

200°C
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NO Slip – Last Cycles

NO during regen is a f(T)
– Non-linear
– Also f(NOX on surface)
– Need to decouple
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Last Cycle Conversions
• At higher operating T – overall average and last cycle 

similar
• At lower T – significant difference (80%)
• Need to capture 

the growth of 
species on the 
surface

• T – gas/surface 
equilibrium
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NO2
• Same trends – high 

temperature, SS reached 
more quickly

• NO/NO2 equilibrium
• Evolved NO2 during 

regen – f(T,NOX)

Temperature Effects - Cycling, 1st Cycle - NO2
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NO2 - 200

NO2 - 290

NO2 - 375

NO2 - 460

NO2 - 550 Change in trapping efficiency?
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Change in NOX Trapping – Heat Evolution
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change in trapping during lean

• Temperature wave traverses 
catalyst length (phase shift)

• Trapping efficiency or 
oxidation?
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N Byproducts – N2O

Temperature Effects - Cycling, last Cycle - N2O
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• N2O observed for all T 
but 550°C

• N2O release – f(T) and 
f(surface NOX coverage)
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N Byproducts – NH3
• NH3 present throughout 

cycles at 200°C
• F(?) at 290°C

– Again, “pretreated” surface 
or saturation

• Fridell and coworkers

Temperature Effects - Cycling, 1st Cycle - NH3
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N species release sequence
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• NO2 = NO → N2O → NH3 at 200°C (at higher T, difficult 
to resolve differences between NO, NO2 and N2O)

• Is it less NOX, more reductant; different sites; surface 
residence time

200°C Test (all species 
observed)
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Reductant Level
• Two levels

– Previous data at 2x 
assumed stored NOX
equivalent

– Second point at 1x

• Similar pattern
– Two “extremes” –

drop off in 
performance 
observed

• Faster approach to SS observed
– More rapid saturation 

• less reductant to clean the surface
• artifact of the experiment

Cycle Average Conversion
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Reductant Level Impact on NO Slip
• Further saturation

– Only 290°C operating 
point approaches 0 ppm 
breakthrough

• NO release larger at 
550, 460 and at 200°C 
operating conditions

• N2O release lower 
throughout

• NH3 release also 
lowered
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Space Velocity Effects
• Run at one temperature 

(375°C – “sweet spot”)
• NOX and reductant levels 

not changed

• Reductant to stored 
NOX not constant

• Reductant to stored 
NOx ↑ with 
increased SV - oops

0

50

100

150

200

250

2850 3050 3250 3450 3650 3850 4050 4250 4450 4650 4850

Time (seconds)

pp
m

NO - 15K
NO - 30K
NO - 50K

Cycle Average Conversion

0

10

20

30

40

50

60

70

80

90

100

150 200 250 300 350 400 450 500 550 600

Catalyst Temperature (C)

C
on

ve
rs

io
n 

of
 N

O
x 

to
 N

2

High Reductant - Total
Low Reductant - Total

50K SV

15K SV



May 18, 2005 8th CLEERS Workshop

NO2 slip emphasizes effect
• At higher SV, observed 

slip begins at earlier 
cycle number, but at 
lower SV, during later 
cycles slip is significant

• Note curvature/shape of 
slip profiles – heat 
effects
– More pronounced effect on 

NO2 profile at greater 
saturation
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Heavier HC as reductant
• Mixture of toluene and dodecane chosen as simulated 

hydrocarbon reductant for diesel
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High Temperature

Performance at 550°C driven by nitrate stability

(no reductant effect)

550°C profile for both 
reductant types - identical

Heavy HC
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Mid Temperature

375°C operating T – performance 
dictated by NOX release during 
regeneration – trapping high, 
conversion high
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Low Temperature
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• 200°C performance
– Surface cleaning during 

regeneration
– NOX to N2 reduction 

efficiency
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As with H2/CO mixture – changes occur with number of cycles 

Faster approach at lower T – poor performance
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NO2 Slip
• At 375°C and above – NO2 trends are similar between 

reductant types
• Low T – surface cleaning effect emphasized

0

20

40

60

80

100

120

140

160

7180 7200 7220 7240 7260 7280 7300 7320

Time (seconds)

pp
m

200C
288C

0

5

10

15

20

25

30

35

40

45

50

4650 4670 4690 4710 4730 4750 4770 4790 4810 4830 4850

Time (seconds)

pp
m

 

NO2 - 200
NO2 - 290

Heavy HC

H2/CO

At 200°C, any NO2 made is usedNO oxidation strong even at 200°C
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N byproduct formation
• No NH3 generation observed with heavy HC use
• N2O

– Lower T – less N2O with heavier HC – no surface N species
– Higher T – Similar trends
– Mid T – more N2O with heavier HC – still not as efficient as 

H2/CO mix
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Less reductant
• Decreasing the amount of 

reductant does not affect low T 
performance
– Surface is doing all it can 

already
• Mid-temperature points do see 

a change due to reductant 
decrease

• High temperature point not 
limited by reductant type or 
amount
– Stability of nitrate species

• Seemingly no effect of SV on 
performance at the 375°C 
point

Cycle Average Conversion - Liquid HC Reductant
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Cycle Average vs Last Cycle

Cycle Average Conversion - Liquid HC Reductant
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Using just the last cycle however, differences are observed – again 
reductant limitations for surface cleaning

Also, artifact not here– separate expts
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Slip profiles
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Similar trapping profiles at 
beginning and end of cycles for 
higher SV

Non-zero trapping profile – due to 
different NOX/HC, integral device or 
OSC? 

First cycles give expected results
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Reductant Usage, H2/CO
• At 200°C, significant 

amount of CO is unused
– Even by 280°C – all 

reductant now being used

• H2 not measured as part 
of this test
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Reductant Usage, HC
• At 200°C – little/no 

usage of HC (total is 
610 ppm in)

• At 288°C, slight
• “light-off” by 375°C

Cycling, Liquid HC, Last Cycles - Liquid HC (High R)

0

50

100

150

200

250

300

350

400

7180 7200 7220 7240 7260 7280 7300 7320

Time (seconds)

pp
m

200C
288C
375C
466C
550C

Cycling, Liquid HC, Low Red

0

50

100

150

200

250

300

350

400

3990 4010 4030 4050 4070 4090 4110 4130

Time (seconds)

pp
m

200C
288C
375C
466C
550C

• At 288°C – some CO make (8 ppm 
instantaneous)

• No other HCs observed
– CH4, C2H6, C3H8, C2H4, C3H6, 

aldehydes monitored
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Long Cycles
• 550°C cleaning – same as short cycle
• Cool to appropriate T
• 15 minutes lean, 10 minutes rich
• Reductant level set at 1000 ppm
• For heavier HC reductant, 1000 ppm H2 (O 

consumption) equivalent used
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Long Cycles
• 3 cycles with reductant in regeneration, after 4th cycle, no 

reductant added
• At 550°C – little trapping, large release

– Little difference between reductant induced and thermal

• With 375°C – NH3 and N2O formation becomes evident
– Significant differences between thermal and reductant “regen”

TPO
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Long cycles – low T
• NH3 formation growing 288C
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• N2O release coincident 
with NO and NO2
– NH3 after (same as cycling)

• Is such a sequence 
formulation dependent?
– eg. surface Pt influence
– facilitated reduction
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Long cycles – 200°C

• Not at SS even after the 3 
cycles – regeneration 
release changing
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Some overlap between N2O and NH3

• NO and NO2
simultaneous – N2O 
later?
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Reductant during regen
CO During Regen

0

100

200

300

400

500

600

12500 13500 14500 15500 16500 17500

Reactor Time 

pp
m

 C
O

200C
288C
375C
463C
550C

625 ppm in

Transition as T increases
– Early usage
– Constant “use”
– OSC, NOX reduction
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CO evolution coincident 
with NH3 release!
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NO vs. NO2 – 288°C

• 18.9 cm3 vs. 28.6 cm3

• Disproportionation mechanism more evident
– Such data allows discrimination between disproportionation, NO2

as oxidant, and O2 as oxidant

NO2 In TPO
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NO vs. NO2 – 200°C
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NO2 In

• 10.4 cm3 vs. 29.8 cm3

• Note: little change in cm3 trapped between 200 and 
288°C with NO2 inlet (55% less with NO)

• Even with 15 minutes – chemistry not done
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Long Cycle – HC reductant
• 550°C test point – same 

as H2/CO mixture
– Nitrate stability
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• 550°C test point
– CO evolved
– No HC feed seen
– No byproducts (reforming) 

seen

• 470°C point similar
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Long Cycle – HC reductant
• Dodecane and toluene 

evident – as well as CO
• N byproducts – N2O prior 

to NH3 again
– NH3 is formed
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Summary
• Data sets phenomenologically diverse - range of 

behaviors for model development
– Predominantly reductant limited – try higher reductant 

levels/amount to see other limiting factors, SV effects for example
– Need more cycles for long runs at low T
– Need longer (more than 15 minutes) to achieve SS during long 

runs
• Need for tracking surface N concentration

– Trapping and regeneration events
– Cycle-to-cycle changes

• Need for surface oxygen/hydrocarbon interactions – OSC 
and HC reforming
– Another sample with less OSC

• Need for tracking heat evolution
– Exotherms, conduction, convection

• More to come
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