System Simulation of Advanced SCR-Systems

11th CLEERS Workshop

15.03.2008

Daniel Chatterjee, Thomas Burkhardt, Stefan Schöffel

and Michel Weibel

Outline

- Advanced SCR-System Setup (DOC+DPF+SCR)
- Simulation Concept
- Modeling SCR Converters
- Modeling DOC Converters
- DOC: Kinetic Correlations
- Simulation Based System Optimization: DOC Impact on SCR
- Modeling of Urea Processing
- Conclusions

Advanced SCR-System: DOC+DPF+SCR

- Adaptation of the DOC+DPF+SCR-System to the individual application is required.
- Optimization target: High NO_x conversion efficiency without NH_3 slip.

Outline

Advanced SCR-System Setup (DOC+DPF+SCR)

Simulation Concept

- Modeling SCR Converters
- Modeling DOC Converters
- DOC: Kinetic Correlations
- Simulation Based System Optimization: DOC Impact on SCR
- Modeling of Urea Processing
- Conclusions

Exhaust Gas Aftertreatment Simulation

3D-Simulation:

Optimization of Geometry for Individual Components

ExACT:

1D Simulation of Combined Exhaust Aftertreatment Systems

Simulation Toolbox *ExACT*

- ExACT toolbox consists of 1D models for SCR, ASC, DOC, DPF, LNT, TWC.
- Model generation by drag&drop.
- Focus: Testcycle simulation, system design, operating strategies.

ExACT Exhaust Aftertreatment System Modeling: Application Examples

Modeling SCR and DOC Catalytic Converters Transport Processes:

- Modeling of one representative channel.
- 1D mass and enthalpy balances for gas and solid.
- Gas-solid mass and heat transport by means of transfer coefficients, h(z).
- SCR : 1D reaction-diffusion equation to account for diffusional limitation within the catalytic wall/washcoat:

$$0 = D_{eff,j} \frac{\partial^2 C_j^*}{\partial x^2} + S_W^2 R_j$$

• DOC: Effectiveness factor/Thiele modulus

$$\eta = \frac{\tanh(\phi)}{\phi} \qquad \qquad \phi = L_{\sqrt{\frac{R_4}{D_{eff} c_{NO}}}}$$

Outline

- Advanced SCR-System Setup (DOC+DPF+SCR)
- Simulation Concept
 - Modeling SCR Converters
- Modeling DOC Converters
- DOC: Kinetic Correlations
- Simulation Based System Optimization: DOC Impact on SCR
- Modeling of Urea Processing
- Conclusions

Modeling SCR-Catalytic Converters: Intrinsic Transient SCR Kinetics

- Catalyst samples taken from commercial SCR catalysts.
- Kinetic investigations with TRM experiments in a flow-microreactor with <u>powdered catalyst</u>.
- Typical concentrations: 1000ppm NO_x and NH₃, $_{5}$ 0 \leq NO₂/NO_x \leq 1, 2% O₂ and 1% H₂O.
- Temperature range: 50-450°C (NH₃ ads./des., NH₃ ox.),160-450°C (SCR react.)
- Kinetic parameter estimation of subsystems with the respective TRM runs.(NH₃ ads./des., NH₃ ox. NO-SCR react., NO+NO₂ react.)

Experimental set up avoids the influence of transport effects on kinetic measurements.
Sequential fitting of kinetic subsystems minimizes parameter correlations.

Modeling SCR-Catalytic Converters: Calibration of Reaction Kinetics by TRM Experiments

SCR Kinetic Measurements: Zeolith Washcoat Powder vs. Crushed Monolith

- Washcoat powder reveals a higher SCR activity compared to the monolith.
- NH_3 storage and NH_3 oxidation are more efficient on powder.
- Experiments on crushed monoliths are quantitatively more representative.

SCR Kinetic Measurements: Zeolite vs. V-Based Catalyst

- Kinetic experiments reveal similar features on V-based an Fe-Zeolite SCR catalysts.
- NH₃ inhibition effect is more pronounced on Fe-Zeolite.
- Experimental results suggest the use of similar global reaction rate expressions.

Modeling SCR-Catalytic Converters:

Proposed Reaction Mechanism for NO₂+NO+NH₃ on **V-Based** and **Fe-Zeolites** SCR Catalysts:

mechanism on V-based and Fe-Zeolites SCR catalysts.

Modeling SCR-Catalytic Converters

Chemical Reactions: NO+NH₃*

• NH₃ adsorption: $NH_3 \rightarrow NH_3^*$

• NH₃ desorption: $NH_3^* \rightarrow NH_3$

• NH₃ oxidation: $4NH_3^*+3O_2 \rightarrow 2N_2+6H_2O$

•NO-SCR reaction: $4NH_3^*+4NO+O_2 \rightarrow 4N_2+6H_2O$

Chemical Reactions: NO+NO₂+NH₃^{**} •Fast-SCR reaction: $2NH_3^* + NO_2 + NO \rightarrow 2N_2 + 3H_2O$

• NO₂- SCR reaction: $4NH_3^* + 3NO_2 \rightarrow 3.5N_2 + 6H_2O$

• N₂O formation: $2NH_3$ *+ $2NO_2 \rightarrow N_2O$ + $3H_2O$ + N_2

* SAE 2005-01-0965, **SAE 2006-01-0468+SAE 2007-01-1136+SAE 2008-01-0867

- \bullet No $\rm NH_3$ adsorption/desorption equilibrium is assumed.
- Two-sites L.-H. expression accounts for NH_3 inhibition of the SCR reaction.
- Higher O₂ concentration increases SCR reaction and NH₃ oxidation rates.
- Simplified reaction scheme for the fast SCR reaction (NH₄NO₃ formation neglected)

System Simulation of Advanced SCR-Systems, Dr. Chatterjee / 15.05.08

Modeling SCR-Catalytic Converters: Zeolite vs. V-Based Catalyst: NH₃ Gradients within Catalytic Walls/Washcoat ETC-Simulation

α=1, Catalyst: 18L, 400cpsi

Outline

- Advanced SCR-System Setup (DOC+DPF+SCR)
- Simulation Concept
- Modeling SCR Converters
- Modeling DOC Converters
- DOC: Kinetic Correlations
- Simulation Based System Optimization: DOC Impact on SCR
- Modeling of Urea Processing
- Conclusions

DOC Modeling: Reaction Kinetics

Chemical Rea	Rate Equations*			
• CO + 1/2 O ₂	$\rightarrow CO_2$	$R_1 = k_1 \frac{y_{\rm CO} y_{\rm O_2}}{G_1}$		
• H ₂ + 1/2 O ₂	$\rightarrow H_2O$	$R_2 = k_2 \frac{y_{\rm H_2} y_{\rm O_2}}{G_1}$		
• C ₃ H ₆ + 9/2 O ₂	\rightarrow 3 H ₂ O + 3 CO ₂	$R_3 = k_3 \frac{y_{\rm C_3H_6} y_{\rm O_2}}{G}$		
• NO + 1/2 O_2	↔ NO ₂	$R_4 = k_9 (y_{\rm NO} y_{\rm O_2}^{0.5} - \frac{y_{\rm NO_2}}{K_{\rm y,9}^{\rm eq}}) \frac{1}{G_2}$		
• H ₂ O + CO	\leftrightarrow H ₂ + CO ₂	$R_5 = k_4 (y_{\rm CO} y_{\rm H_2O} - \frac{y_{\rm CO_2} y_{\rm H_2}}{K^{\rm eq}})$		
Chemical Reactions: NO-Reduction		$G_x = L.H.$ Inhibition Term		
• NO + CO	$\rightarrow CO_2 + 1/2 N_2$	$R_6 = k_6 y_{\rm CO} y_{\rm NO}^{0.5}$		
• NO + H ₂	\rightarrow H ₂ O + 1/2 N ₂	$R_7 = k_7 y_{\rm H_2} y_{\rm NO}^{0.5}$		
•9 NO + C_3H_6	$\rightarrow 3 \text{ CO}_2 + 9/2 \text{ N}_2 + 3 \text{ H}_2\text{O}$	$R_8 = k_8 y_{\rm C_3H_6} y_{\rm NO}^{0.5}$		
 Global reaction kinetics for CO, H₂,C₃H₆ oxidation and NO reduction. Backward reaction/thermal equilibrium included for NO-Oxidation Inhibition effects are considered. 				

DOC Modeling: Model Calibration Strategy

- Development of standard calibration procedures.
- (stready state test bench data sufficient for NO-oxidation)
- Model based map generation for ECUs + Assessment of transient performance.

DOC Modeling: NO-Oxidation – Calibration of Reaction Kinetics

• Keep E_{act} fixed, only preexponetial factor k_0 is changed

DOC Modeling: NO-Oxidation – Steady State Validation

- Only a few measurements at different mass flows are required for calibration.
- Excellent prediction quality for steady state conditions.

DOC Modeling: NO-Oxidation - Transient Validation

Excellent prediction quality (error<2.3%) also for transient conditions.
Deviations at idle speed conditions.

DOC Modeling: Axial Profiles within DOC Catalyst

ETC Simulation

- Significant axial temperature and concentration gradients within monlith.
- \bullet CO/HC-oxidation located at catalyst entrance. $\mathrm{NO_2}$ formation only after CO and HC depletion.
- Slow NO oxidation rate compared to CO and HC oxidation.

Outline

- Advanced SCR-System Setup (DOC+DPF+SCR)
- Simulation Concept
- Modeling SCR Converters
- Modeling DOC Converters
- DOC: Kinetic Correlations
- Simulation Based System Optimization: DOC Impact on SCR
- Modeling of Urea Processing

Conclusions

DOC Modeling: Correlation PGM-Loading – Kinetic Parameters

DOC Modeling: Kinetic Correlation for NO-Oxidation

Outline

- Advanced SCR-System Setup (DOC+DPF+SCR)
- Simulation Concept
 - Modeling SCR Converters
- Modeling DOC Converters
- DOC: Kinetic Correlations
- Simulation Based System Optimization: DOC Impact on SCR
- Modeling of Urea Processing

Conclusions

Simulation Study: DOC+DPF+SCR: System Setup

Urea Injection

	DOC	DPF	SCR
Noble Metal	Pt/Pd	uncoated	-
Loading [g/ft ³]	varied	uncoated	Fe-Zeolite
Volume*	0.5	0.7	1

Design Target 80% NOx conversion within the combined FTP (1/7 cold FTP + 6/7 hot FTP)

DAIMLER Model Application: Total NOx Conversion Efficiencies: Fe-Zeolite vs. V-Based Catalyst* **ESC** ETC V-based Zeolite V-based Zeolite 100 100 95 95 NO_x conversion [%] NO_x conversion [%] 90 90 85 85 80 80 75 75 70 70 0% NO2 50% NO2 DOC DOC 0% NO2 50% NO2 DOC DOC yst: 18 (low PGM) (high PGM) (low PGM) (high PGM) • V-based catalyst has higher efficiency for low NO₂ input concentrations. • Fe-Zeolite catalyst has higher efficiency for optimized NO_2/NO_x ratios.

*SAE 2007-01-1136

SCR NO_x Conversion Efficiency: Influence of NO₂

DOC Modeling: Steady State NO-Oxidation PGM-Loading vs. Catalyst Volume – Steady State

Simulation reveals higher performance for low specific PGM-loading.
Conversion efficiency at high S.V. is limited by residence time.

DOC+DPF+SCR Simulation: DOC Optimization: Detailed Analysis Hot Start FTP

- Total NO_x conversion determined by first 650s of the FTP.
- Low NO_2/NO_x ratios after DOC during acceleration peaks in the first 650s.
- System performance limited by DOC performance under low temperature and high mass flow operating conditions.

DOC+DPF+SCR Simulation: DOC Optimization: Detailed Analysis Cold Start FTP

> Total NO_x conversion determined by the second part of the FTP (600s-1200s)

DOC+DPF+SCR Simulation: DOC Influence on SCR

DOC+DPF+SCR Simulation: DOC Influence on SCR

DOC+DPF+SCR Simulation:

Impact of DOC Volume vs. Noble Metal Loading on SCR

- 55g/ft3 DOC noble metal loading required with the reference DOC volume at aged state to achieve 80% FTP NO_x Performance.
- Significant volume and noble metal reduction possible if degreened state could be stabilized.
- Volume Reduction requires significant increase in noble metal loading
 - \rightarrow Residence time limitation.

Outline

- Advanced SCR-System Setup (DOC+DPF+SCR)
- Simulation Concept
 - Modeling SCR Converters
- Modeling DOC Converters
- DOC: Kinetic Correlations
- Simulation Based System Optimization: DOC Impact on SCR
 - Modeling of Urea Processing

Conclusions

3D Simulation AdBlue Processing:

AdBlue Processing Within the Exhaust Line

3D Simulation AdBlue Processing: Spray Modeling and Influence of Mixing Device

3D Simulation AdBlue Processing: Mixer Influence on Wall Film Buildup*

System Simulation of Advanced SCR-Systems, Dr. Chatterjee / 15.05.08

3D Simulation AdBlue Processing:

Mixer Influence on Wall Film Buildup*

3D Simulation AdBlue Processing: Thermolysis/HNCO-Formation

Mixer acts as an efficient evaporation surface within the exhaust flow.

Dr. Schöffel- GR/VPE

3D Simulation AdBlue Processing: NH₃ - Distribution

Outline

- Advanced SCR-System Setup (DOC+DPF+SCR)
- Simulation Concept
- Modeling SCR Converters
- Modeling DOC Converters
- DOC: Kinetic Correlations
- Simulation Based System Optimization: DOC Impact on SCR
- Modeling of Urea Processing

Conclusions

Conclusions

- Integrated EGA system modeling has become essential and very efficient tool to assist the design of complex exhaust gas aftertreatment systems.
- Approach: 1D System modeling refined by 3D component modeling.
- Kinetic correlations offers the possibility to include noble metal variations in the system analysis.
- DeNOx efficiency of DOC+DPF+SCR (Fe-Zeolite) systems is limited by the DOC performance at low temperatures and high mass flows.
- New SCR materials may offer the possibility to reduce the critical impact of the DOC performance.
- DOC aging leads to significant "over sizing" of the system.
- Model extensions regarding aging are necessary.

Acknowledgments

Prof. Enrico Tronconi, Prof. Isabella Nova and Antonio Grossale

Dr. Petr Koci, Prof. M. Marek

Prof. G. C. Koltsakis

DAIMLER

Jochen Lahr, Alexander Massner and Dr. Bernd Krutzsch