Non-NH3 SCR Performance in an LNT/SCR Lean Exhaust System

Mark A. Dearth*, Giovanni Cavataio, Joseph Theis, Lifeng Xu, R.W. McCabe Ford Motor Company RIC

And

Mark Crocker, University of Kentucky CAER

Talk Outline

- Vehicle studies of LNT-SCR HC interactions.
- Laboratory studies of LNT-SCR system and benefits.
- Laboratory confirmation of ethylene and propylene interaction with Cu-SCR.
- Summary of results.

LNT+SCR vehicle dynamometer studies

Experimental 4.4L V-6 TDI F150 with DOC/LNT/SCR/cDPF Coldstart data collected after lean-only (no rich purges) HFET/US06 high temp/high speed pre-conditioning.

LNT+SCR flow reactor studies

High H_2 level produce NH3 and improve the NOx performance at low temperatures, while high C_2H_4 levels produce NH3 and improve the NOx performance at high temperatures.

> Vehicle applications – match reductant composition to exhaust temperatures using calibration (e.g., injection timing)

Sandwich designs improve C_2H_4 conversion due to adsorption/desorption of C_2H_4 on SCR catalyst during purge, SCR releases some during lean periods, downstream LNT converts it

> Need to minimize HC slip, crucial for meeting low HC emission standards

SCR+HCs flow reactor studies

Speciation Study of LNT Exhaust Gas

• ET-IR applied to study formation of potential NOx reductants over LNT (other than NH₃); only HCN is consistently observed, but in low concentrations

• Hence, formation of organonitrogen species over LNT does not appear to be important

Slipped hydrocarbon is responsible for NOx reduction in SCR catalyst

Measured HCN downstream of LNT during lean/rich cycling (for 3 different reductant mixtures)

Steady State Reaction over SCR Catalyst

Feed gas: 300 ppm NO, 5%CO₂, 5%H₂O, 1%O₂, N₂ balance, GHSV = 30,000 h⁻¹, reductant as shown

- SCR catalyst is active for NOx reduction using ethylene, propylene and CO/H₂ as reductants
- Can be significant for NOx conversion under conditions when there is little formation of NH₃

 $\begin{array}{c} NO_x \ (300 + 240 \ ppm \ NO_2 + NO) \ conversion @ \ 290^{\circ}C - 310^{\circ}C \ across \ SCR \ using \ C_2H_4 \ (10000 \ ppm) \\ 60/10 \ sec \ L/R \ cycling \ 5\% \ H_2O, \ 5\% \ O_2, \ 0.5\% \ O_2 \ rich \end{array}$

Overall Average Conversion of Lean and Rich Duration

Propylene

CASE 1		
PROPYLENE with NO		
	Lean Mode	Rich Mode
Time (s)	60	10
Lambda	~ 2.00	0.99
NO	200ppm	200ppm
NO 2	0	0
Ο ₂	10%	0%
C ₃ H ₆	0ppmC1	5000ppmC1
C_2H_4	0	0
CO ₂	5%	5%
H ₂ O	5%	5%
N ₂	balance	balance

CASE 2				
ETHYLENE with NO				
	Lean Mode	Rich Mode		
Time (s)	60	10		
Lambda	~ 2.00	0.99		
NO	200ppm	200ppm		
NO 2	0	0		
O ₂	10%	0%		
C ₃ H ₆	0	0		
C_2H_4	0ppm C1	5000ppmC1		
CO ₂	5%	5%		
H ₂ O	5%	5%		
N ₂	balance	balance		

Ethylene

Ethylene

Conclusions

- Reactor studies have shown that a hydrocarbon-based NOx reduction mechanism (ethylene and propylene studied) can operate in the SCR catalyst in parallel with the NH₃-SCR mechanism. A significant amount of HC can be stored even at high temps.
- The hydrocarbon pathway is characterized by high NO₂ conversion.
- HCs other than ethylene and propylene also interact, but Pi bond containing molecules are favored.
- A reductant starved condition favors the interaction (non-urea system).
- NO_2 is reduced (in part) to NO at higher inlet levels of NO_2 +NO.
- HCs are oxidized to form CO perhaps more than CO₂ across the CuSCR.
- The LNT+SCR system adapts (as the LNT ages) to maintain high HC and NOx conversion efficiency (at the expense of CO?).