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Motivation

• NH3/Urea Selective Catalytic Reduction (SCR) proven effective over 
wide range of conditions, but improvement necessary for:

• increasingly stringent emission standards

• higher engine-out NOx under high efficiency operating points

• driven by fuel economy regulations

• cooler exhaust temperatures from advanced combustion regimes

• hotter exhaust temperatures from lean gasoline engines

• Model-based SCR system controls not sufficiently developed for 
adapting to catalyst aging/de-activation

• better understanding of catalyst aging required



Objectives

• Characterize a commercially available 2010 Cu 
zeolite SCR catalyst through CLEERS transient 
reactor protocol.

• Develop a baseline SCR model and validate it 
against the transient reactor data for future 
catalyst aging studies.
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Revised transient CLEERS SCR protocol; 
assessed with commercial Cu zeolite

• Protocol designed to generate data needed for 
model calibration and performance evaluation

– steady state points 
• SCR conditions:

– NH3/NOx = 0.8, 1.0, 1.2
– NO2/NOx = 0.0, 0.5

• O2 oxidation of NH3 & NO
– arranged to measure NH3 storage capacities 

between points
– goal: minimal operating time and expense

• Experiments conducted on Cu zeolite core sample 
cut from Ford F-series super duty SCR monolith

– 150-550°C @ 50°C
– 30k, 60k, 90k hr-1 (60k shown if not indicated)
– 350 ppm NOx

• Data will serve as baseline for investigations of 
hydrothermal aging and HC fouling

note: 5% H2O & 5% CO2 in all steps



Steady state points illustrate wide operating window  
of fresh Cu zeolite SCR catalyst

• Fresh commercial Cu SCR shows:
– minimal NH3 slip
– good NOx conversion for 250°C ≤ T ≤ 450°C, but drop off at high T
– high selectivity to N2



Catalyst has relatively low sensitivity to NO2/NOx 

• Inclusion of NO2 increases NOx conversion near light-off
• NO2 increases N2O formation, but high N2 selectivity maintained
• High NO oxidation could reduce need for NO2 in feed



High T NOx conversion limited by NH3 oxidation

• All NH3 consumed at high T
• NOx conversion improves with increasing NH3 dose
• High NH3 oxidation activity: competes with SCR at high T



Transients reveal critical NH3 coverage

• NOx conversion vs. NH3 coverage:
1. saturate with NH3

2. turn NH3 off, NOx on
3. observe NOx conversion as 

stored NH3 is consumed
• NH3 coverage to achieve high NOx 

conversion:
– decreases with T
– < saturation for all but lowest T

• No evidence of NH3 inhibition of 
SCR reactions



Transients quantify details of NH3 storage capacity

• Example capacities:
– Total: NH3 uptake without O2

– Usable: NH3 stored under O2

– Buffer: capacity for temporary 
NH3 overdose/underdose

• Available NH3 storage capacity 
changes with current conditions & 
operating history



SCR surface NH3 inventory shows catalyst utilization

• Estimation of fractional 
catalyst utilization:
1. Turn NH3 off at end of 

SCR steps
2. Integrate NOx 

reduced by stored 
NH3

3. Divide by Usable NH3 
capacity at same T

• Utilization decreases with
– higher T
– lower SV
– NO2 in feed

NH3 coverage 
(catalyst utilization)

NO2/NOx = 0.0
NH3/NOx = 1.0
‘standard’ SCR

NH3 coverage 
(catalyst utilization)

NO2/NOx = 0.5
NH3/NOx = 1.0

‘fast’ SCR



Single Site NH3 Storage Model
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L. Olsson’s single site rate parameters 
on Cu-ZSM-5 (ACatB, 2008) considered 

as initial conditions 

Adsorption and Desorption Rates

Rate parameters identified on TPD data at 30000/hr SV

430 ppm of NH3, 5% H2O, 5% CO2 at T = 150oC

• All SCR models developed in Matlab/Simulink

• First order Euler integration in space – 100 elements (cells) along the axis

• Simulated using a variable step solver (ode 23tb) in Simulink

• Nonlinear constrained minimization (fmincon) used to identify rate parameters using 

Matlab’s Optimization toolbox



Single Site Storage Model Validation on 
TPD Tests

Validation at 60000/hr and 90000/hr SV data



NOx Reaction Pathways

In addition to NH3 adsorption and desorption on SCR catalyst surface, 
the following reactions have been incorporated in this version of Cu-Z 

SCR model

NH3 oxidation 2NH3 + 3/2O2 → N2 + 3H2O 

NO oxidation NO + 1/2O2 ↔ NO2

Standard SCR 4NH3 + 4NO + O2 → 4N2 + 6H2O

Fast SCR 4NH3 + 2NO + 2NO2 → 4N2 + 6H2O
NO2 SCR 4NH3 + 3NO2 → 7/2 N2 + 6H2O



NH3 Oxidation Model

4SOH6N2O3.NH4 2223 S

• Parameters identified at 60k/hr data using unconstrained nonlinear 
minimization function in Matlab (fminsearch).

• Cost function to be minimized is defined as the average sum of absolute 
error between the test and simulated NH3 concentrations.

A = 2.22E3 m3/mol/s

E = 74 kJ/mol)
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NO Oxidation Model
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A = 9.4E3 m3/mol/s

E = 43 kJ/mol

Aeq = 9.42E-7

Eeq = 58 kJ/mol

Ø Parameters identified using 4 data points at 60k/hr and 90k/hr using 
unconstrained nonlinear minimization function in Matlab (fminsearch).

Ø Cost function to be minimized is defined as the average sum of absolute 
error between the test and simulated NO and NO2 concentrations.
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Standard SCR Model

4S  O6H N 4 O  4NO  S.NH4 2223 
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Astd-scr = 9.89E8 m3/mol/s

Estd-scr = 84.9 kJ/mol

Ø Standard SCR pre-exponential was manually adjusted at 150oC, 30k/hr SV and 
the model was validated at the remaining data points.

Ø Model mismatch in NOx conversion at T > 450oC was observed at higher space 
velocities, possibly due to NH3 oxidation to NO, which is not considered in the 
model.



Alpha = 0.8



Alpha = 1.0



Fast SCR Model
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• Model validation shown only for T > 150oC due to poor model match with the 
test data at lower temperatures. Mis-match possibly due to the absence of 
nitrate formation kinetics, etc in the model.

• NO2-SCR kinetic model included for better match at low temperatures. At 
high temperatures NO2-SCR can be neglected.

• No parameter tuning was done – Fast SCR & NO2-SCR parameters from 
Olsson et al., (2008) on Cu-Z SCR model were used in the model directly.



Alpha = 0.8



Alpha = 1.2



Model Validation I: Protocol Run – 300oC 
(90k/hr SV)



Model Validation II: Protocol Run – 300oC 
(60k/hr SV)



Rate Parameter Comparison

Reaction E 
(kJ/mol)

E (kJ/mol) from 
Published 
Literature

Reference

NH3 Desorption 180.2 181.5 Olsson, 2008
NH3 Oxidation 74 68.7±6.31 Kamasamudram, 2010
NO Oxidation 39 43 Chakravarthy, 2007
Standard SCR 84.9 84.9 Olsson, 2008

Fast SCR 85.1 85.1 Olsson, 2008

1Parameter reported on Fe-Z by Kamasamudram et al., Catalysis Today 151 (2010) 212-222



Summary
• Fresh commercial Cu zeolite shows:

• wide operating window
• SCR performance limited by NH3 oxidation at high temperatures
• low sensitivity to NO2/NOx in feed

• Protocol transients generate vital information for model-based control 
design: 
• target NH3 coverage for high NOx conversion
• “usable” NH3 storage
• fractional catalyst utilization

• Baseline SCR model developed and validated against the reactor data 
for 0.8 ≤ NH3/NOx ≤ 1.2 and 30k ≤ SV ≤ 90k

• Low temperature performance needs to be improved by incorporating 
global nitrate formation kinetics, N2O formation and NO2-SCR reaction



Next Steps
 Improve the baseline Cu SCR model prediction at lower 

temperatures

 Investigate the competitive adsorption kinetics on a model 
Cu/beta SCR catalyst through experiments and modeling

 Determine need for incorporating NO2 SCR in protocol

 Investigate the effects of catalyst aging on the kinetic 
parameters and physicochemical properties of Cu SCR 
catalyst

 Identify critical rate/model parameters that need to be 
adapted for catalyst aging/deactivation and develop 
maps/math expressions to support model-based controls

 Incorporate the Cu SCR model into Autonomie for system-
level performance simulation
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