Bench Reactor Studies and Reactor Modeling for NOx Control in Diesel Engines using NH₃

Maruthi N. Devarakonda

Institute for Interfacial Catalysis Pacific Northwest National Laboratory, Richland, WA

Co-Authors: Russell Tonkyn, Diana Tran, Jonathan Male and Darrell Herling

A Presentation at DOE-CLEERS Workshop, Dearborn, MI., April 28-30 2009.

Presentation Outline

Steady State Reactor: Tests and Model Development
 Steady State Tests: H₂O Effect on NO_x Oxidation
 HNCO Tests: Set-up and Status
 Future Work

Review & Motivation

- Research focus in diesel emission control is slowly shifting from individual aftertreatment devices to integrated systems.
- There is a thorough need to investigate the dynamics between various aftertreatment devices for overall optimal performance to simultaneously reduce NO_x and PM. Ex: HC poisoning/inhibition on zeolites, catalyst aging, etc.
- From recent literature, research activity is also seen in understanding detailed mechanistic pathways of various reactions. Ex: H₂O adsorption, NO_x adsorption on zeolites, NH₄NO₃ and N₂O formation, etc.
- Research in urea evaporation, decomposition and HNCO hydrolysis is gaining momentum to address the formation of cyanuric acid and other by-products.
- Based on the review, research is being done at PNNL on monolith cores/powders both from a steady state and transient standpoint to address issues related to SCR and integrated systems.
 - Alternate reductants such as HNCO are also being explored for hydrolysis and NO_x control.

Steady State Tests on Fe-Zeolite

- Catalyst is based on iron zeolite technology (400 cpsi, 0.0065" substrate wall thickness, washcoat loading 160 g/L, SA 77 m²/g, 0.5 % atomic concentration Fe in washcoat)
- Tests conducted on a 9.31 cm³ volume monolith core at a flow rate of 4.5 SLPM.

Two different tests are conducted:

A. Steady state surface isotherm tests followed by TPD.

B. Controlled reactor tests for step-wise identification and validation.

NH₃ Adsorption-Desorption Model

Assuming non-activated adsorption rate constant, the adsorption and desorption rate expressions are given by

$$r_{ads} = A_{ads} c_{s,NH_3} (1 - \theta) N_{total}$$
$$r_{des} = A_{des} e^{-E_{des}/RT} \theta N_{total}$$

Define $\theta = \frac{n_{st}}{N_{total}}$ then

$$r_{ads} = A_{ads} c_{s,NH_3} (N_{total} - n_{st})$$
$$r_{des} = A_{des} e^{-E_{des}/RT} n_{st}$$

At equilibrium, $R_{ads} = R_{des}$

$$A_{ads}c_{s,NH_3}(N_{total} - n_{st,eq}) = A_{des}e^{-E_{des}/RT}n_{st,eq}$$

Where $n_{st,eq}$ is the NH₃ storage at equilibrium. NH₃ storage at equilibrium ($n_{st,eq}$) can be obtained by integrating the total NH₃ entering the catalyst minus the total NH₃ leaving the catalyst until equilibrium t_{eq} .

$$n_{st,eq} = \int_{0}^{eq} (n_{NH_3,in} - n_{NH_3,out}) dt$$

Dividing the above equation by $A_{ads}c_{s,NH_3}n_{st,eq}N_{total}$ throughout and rearranging the terms in the equation, we get

$$\frac{1}{n_{st,eq}} = \frac{1}{N_{total}} + \frac{1}{K(T)c_{s,NH_3}N_{total}} \qquad \text{Where}$$

$$K(T) = \frac{A_{ads}}{A_{des}e^{-E_{des}/RT}}$$

Approach followed from ref: C. Sampara (U.Michigan., Ph.D. Dissertation, 2008)

NH₃ Surface Isotherm Tests on Fe-zeolite : Data Analysis

Storage vs Temperature Curve

Test Matrix to study Langmuir Isotherms

No	C _{NH3(ppm)}	Temperature (C)
1	200	100
2	350	100
3	200	150
4	350	150
5	200	200
6	350	200

Langmuir Isotherms

Micro-reactor Model: Equations

The modeling equations are obtained by solving the gas phase and surface phase concentrations of the species and NH₃ storage states.

$$\varepsilon \frac{\partial c_{g,i}}{\partial t} = -\varepsilon u \frac{\partial c_{g,i}}{\partial x} - \beta_i A_g \left(c_{g,i} - c_{s,i} \right)$$

$$(1-\varepsilon)\frac{\partial c_{s,i}}{\partial t} = \beta_i A_g \left(c_{g,i} - c_{s,i} \right) + \sum_j r_{i,j}$$

$$\frac{d\theta}{dt} = \frac{1}{\Omega} (r_{ads} - r_{des} - \sum_{j} r_{NH_3,j} n_{NH_3,j})$$

Here i corresponds to NO, NO_2 and NH_3 species and j is the number of reactions that species i is involved.

Simulated using a variable step solve ode23tb, a TR-BDF2 algorithm.

> Spatial derivative term approximated by a first order Euler integration scheme.

A total of 10 tanks (cells or axial increments) are considered in series, each represented by a 'C' s-function and implemented in Matlab/Simulink environment.

Reactor Model: Reaction Scheme, Kinetics

No	Reaction Name	Reaction	Reaction Rate
1	NH ₃ Adsorption	$NH_3 + S \rightarrow NH_3^*$	$R_1 = k_1 C_{NH3} (1-\theta) \Omega$
2	NH ₃ Desorption	$NH_3^* \rightarrow NH_3 + S$	$R_2 = k_2 \theta \Omega$
3	Fast SCR	$2NH_3 + NO + NO_2 \rightarrow 2N_2 + 3H_2O$	$R_3 = k_3 C_{NO} C_{NO2} \theta \Omega$
4	Standard SCR	$4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$	$R_4 = k_4 C_{NO} \theta \Omega$
5	NO ₂ -SCR	$4NH_3 + 3NO_2 \rightarrow 3.5N_2 + 6H_2O$	$R_5 = k_5 C_{NO2} \theta \Omega$
6	NH ₃ Oxidation	$2NH_3+3/2O_2 \rightarrow N_2+3H_2O$	$R_6 = k_6 C_{O2} \theta \Omega$
7	NO-NO ₂ Oxidation	NO+1/2O ₂ ⇔NO ₂	$R_7 = k_{7,f} C_{NO} C_{O2}^{1/2} - k_{7,b} C_{NO2}$

 $k_2 = A_2 e^{\frac{-E_2(1-\gamma\theta)}{RT}}$

Rate parameters for the above reactions are taken from these references

Ref: Chaitanya Sampara (Ph.D. Dissertation, University of Michigan, 2008)

L. Olsson et al, Applied Catalysis B: Environmental, 2008

L. Olsson et al, Applied Catalysis B: Environmental, 2009

Parameter Identification as an Optimization Problem

Matlab's simplex based optimization function 'fminsearch' is used. Find the model parameters (x_i) where x_i are the pre-exponentials and activation energies of the reactions while minimizing the cost function

$$J = \frac{1}{N} \sum_{i=1}^{N} \left| c_{i,NH_3,s} - c_{i,NH_3,m} \right|$$

Where N is the number of test data points.

Subscripts 's' and 'm' in the cost function refer to the simulated and measured concentrations respectively.

NH₃ Adsorption-Desorption Model Validation

 Data during adsorption phase is used to identify A_{ads}.

• Other test cases are used to validate the overall ads/des model.

• Discrepancy during the physisorption phase just after the NH₃ injection is shut off. Need to incorporate multi-site kinetics.

 Multi-site kinetic model will be explored in the future.

NH₃ Oxidation – Model Validation

NH₃ Oxidation as a function of Gas Temperature

• The oxidation activity is observed at temperatures greater than 300° C, reaching the maximum conversion at T = 600° C.

 Input data is not recorded, so inputs are given as step inputs in the simulation.

Pacific Northwest NATIONAL LABORATORY

• Maximum NO to NO_2 conversion obtained at 434°C on Fe-zeolites which is close to 450°C, the temperature at which maximum NO_2 conversion was observed by L.Olsson's group on a Cu-ZSM-5 catalyst.

Input data is not recorded, so inputs are given as step inputs in the simulation.

NO Oxidation - Model Validation

Standard SCR - Model Validation

 Poor NO_x conversion at low (200°C) temperatures in the absence of NO₂.

• Disparity in NO_x and NH_3 conversion efficiencies at high temperatures due to NH_3 oxidation to N_2 .

• Simulated NH_3 storage values consistent during the start and end of the test (at T = 200°C).

350 ppm of NO, 350 ppm of NH_3 , 5% CO_2 , 2% H_2O and 14% O_2 at a SV of 29 k/hr

Pacific Northwes

NATIONAL LABORATORY

NO₂ SCR - Model Validation

• Surge of N_2O at 250°C due to the formation of NH_4NO_3 at low temperatures and its subsequent decomposition to N_2O (Grossale, 2008).

• Equal outlet concentrations of NO_2 and NH_3 until 250°C further illustrate the formation of NH_4NO_3 due to 1:1 NO_2 : NH_3 reaction, rather than 4:3 which takes place at high temperatures.

$$2NH_3 + 2NO_2 \rightarrow N_2 + NH_4NO_3 + H_2O_3$$

 $4NH_3 + 3NO_2 \rightarrow 7/2 N_2 + 6 H_2O$

350 ppm of NO₂, 350 ppm of NH₃, 5% CO₂, 2% H₂O and 14% O₂ at a SV of 29 k/hr

Pacific Northwest

Fast SCR – Tests

Fast SCR – Model Validation

Discrepancy in model and test data is attributed to NH₄NO₃ formation and its decomposition which are not incorporated in the model.

• NH₄NO₃ formed at 150C, decomposes to NH₃ and

 $NH_4NO3 \Leftrightarrow NH_3 + HNO_3$

HNO₃ in turn reacts with NO to form NO₂ and H₂O at higher temperatures

 $2HNO_3 + NO \rightarrow 3NO_2 + H_2O$

Observations consistent with Grossale, 2008.

• Fast SCR rate parameters used in the model are directly taken from Olsson, 2008.

Overall Model Validation

• Two different tests were conducted at various temperatures ranging from 150°C to 600°C by varying the ratios of NO/NO₂ = $\frac{1}{2}$ and NO/NO₂ = 2/1 in the exhaust.

• The reactor model is then validated to compare the NO_x and NH_3 conversion efficiencies for a couple of cases.

A good match is observed in both the cases, except at T < 200°C.</p>

H₂O Adsorption Studies

• NH₃ adsorption decreases as percent H₂O increases in the stream. Effect of H₂O on NH₃ can be represented by a power law.

 Multiple peaks observed in H₂O adsorption suggests more than one H₂O adsorption site on the zeolite catalyst.

 Consistent results obtained when a syringe and a bubbler are used for H₂O injection individually.

2310 x 21.2

44450 out

4520 ads

460

20lo

bypass

450

3000

2500

2000

1500

1000

500

0

Effect of H₂O on NO + $\frac{1}{2}$ O₂ \rightarrow NO₂

• H₂O inhibition worsens at high temperatures.

At T =150°C, H₂O inhibition is not prominent, but as temperature increases, it becomes significant for 0.1% to 0.5% H₂O feeds.
At very high temperatures (T > 485°C), H₂O effect on NO oxidation drops off. One reason might be due to very little H₂O

adsorption at those temperatures.

Pacific Northwest

0.4

0.5

0.6

Effect of H_2O and O_2 on $NO_2 \rightarrow NO + \frac{1}{2}O_2$

- H₂O inhibits NO₂ dissociation and the inhibition increases as the temperature increases.
- Similar trend of H_2O inhibition is observed at 2% O_2 and 14% O_2 at T = 483°C.
- At T = 483°C and $H_2O = 3\%$, NO_2 dissociation slightly decreases as O_2 percent increases.

Conclusions

- H_2O inhibits both NO oxidation and NO₂ dissociation reactions.
- NH_3 adsorption decreases as percent H_2O increases in the stream.
- Steep downward slope of NO oxidation from dry to 0.5% H₂O feed indicates that it is affected by smaller fractions of H₂O at all temperatures.
- N_2O formation is significant when $NO_2/NH_3 = 1.0$ at low temperatures with no NO in the stream.
- NH₄NO₃ is a critical intermediate in the fast SCR reaction at low temperatures and needs to be tracked for better model predictability and effective NO_x control.
- Micro-reactor model predicts the outlet concentrations reasonably well in the test cases considered. Overall model validation in steady state NO_x and NH₃ conversions show good predictability.
- Further model improvement is needed by incorporating H₂O, NH₄NO₃ and HC based reactions to understand the various mechanistic pathways on Fe-zeolites.
 - HNCO generation set-up is complete and preliminary tests are being done to evaluate HNCO purity.

- Detailed model based analysis of H_2O effect on NO oxidation, NO_2 dissociation, NH_4NO_3 and N_2O formation.
- Investigation of competitive adsorption between HC and NH₃ storage in active catalytic sites.
- Transient testing of Fe-zeolite micro-reactor using NH₃.
- Steady state and transient testing of the reactor using HNCO.
- Steady state kinetic modeling of HNCO hydrolysis and adsorption.

Acknowledgements

Overall Model Validation – NO/NO₂

• At the end of each run of the tests shown in the previous slide, NH_3 is shut off and NO \Leftrightarrow NO₂ is investigated at T = 563°C by switching NO off and then switching NO₂ off.

• Simulated NO and NO_2 concentrations match with the test data within 10-15 ppm error margin.

Pacific Northwest NATIONAL LABORATORY

H₂O Adsorption Model

• Model matches well with the data except at the second peak illustrating that there may be more than one site where H_2O is adsorbed.

